Oracle America, Inc. v. Google Inc.

Filing 1192

TRIAL BRIEF Google's May 23, 2012 Copyright Liability Trial Brief by Google Inc.. (Attachments: #1 Exhibit A, #2 Exhibit B, #3 Exhibit C, #4 Exhibit D, #5 Exhibit E)(Van Nest, Robert) (Filed on 5/23/2012)

Download PDF
EXHIBIT E G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package java.util; 18 19 /** 20 * This is a near duplicate of {@link TimSort}, modified for use with 21 * arrays of objects that implement {@link Comparable}, instead of using 22 * explicit comparators. 23 * 24 * <p>If you are using an optimizing VM, you may find that ComparableTimSort 25 * offers no performance benefit over TimSort in conjunction with a 26 * comparator that simply returns {@code ((Comparable)first).compareTo(Second)}. 27 * If this is the case, you are better off deleting ComparableTimSort to 28 * eliminate the code duplication. (See Arrays.java for details.) 29 */ 30 class ComparableTimSort { 31 /** 32 * This is the minimum sized sequence that will be merged. Shorter 33 * sequences will be lengthened by calling binarySort. If the entire 34 * array is less than this length, no merges will be performed. 35 * 36 * This constant should be a power of two. It was 64 in Tim Peter's C 37 * implementation, but 32 was empirically determined to work better in 38 * this implementation. In the unlikely event that you set this constant 39 * to be a number that's not a power of two, you'll need to change the 40 * {@link #minRunLength} computation. 41 * 42 * If you decrease this constant, you must change the stackLen 43 * computation in the TimSort constructor, or you risk an 44 * ArrayOutOfBounds exception. See listsort.txt for a discussion 45 * of the minimum stack length required as a function of the length 46 * of the array being sorted and the minimum merge sequence length. 47 */ 48 private static final int MIN_MERGE = 32; 49 50 /** 51 * The array being sorted. 52 */ Page 1 of 17 Trial Exhibit 45.2, Page 1 of 17 UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF CALIFORNIA TRIAL EXHIBIT CASE NO. 10-03561 WHA DATE ENTERED BY DEPUTY CLERK 45.2 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 private final Object[] a; /** * When we get into galloping mode, we stay there until both runs win less * often than MIN_GALLOP consecutive times. */ private static final int MIN_GALLOP = 7; /** * This controls when we get *into* galloping mode. It is initialized * to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for * random data, and lower for highly structured data. */ private int minGallop = MIN_GALLOP; /** * Maximum initial size of tmp array, which is used for merging. The array * can grow to accommodate demand. * * Unlike Tim's original C version, we do not allocate this much storage * when sorting smaller arrays. This change was required for performance. */ private static final int INITIAL_TMP_STORAGE_LENGTH = 256; /** * Temp storage for merges. */ private Object[] tmp; /** * A stack of pending runs yet to be merged. Run i starts at * address base[i] and extends for len[i] elements. It's always * true (so long as the indices are in bounds) that: * * runBase[i] + runLen[i] == runBase[i + 1] * * so we could cut the storage for this, but it's a minor amount, * and keeping all the info explicit simplifies the code. */ private int stackSize = 0; // Number of pending runs on stack private final int[] runBase; private final int[] runLen; /** * Asserts have been placed in if-statements for performace. To enable them, * set this field to true and enable them in VM with a command line flag. * If you modify this class, please do test the asserts! */ private static final boolean DEBUG = false; /** * Creates a TimSort instance to maintain the state of an ongoing Page 2 of 17 Trial Exhibit 45.2, Page 2 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 105 106 107 108 109 110 111 sort. * * @param a the array to be sorted */ private ComparableTimSort(Object[] a) { this.a = a; // Allocate temp storage (which may be increased later if necessary) int len = a.length; @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"}) Object[] newArray = new Object[len < 2 * INITIAL_TMP_STORAGE_LENGTH ? len >>> 1 : INITIAL_TMP_STORAGE_LENGTH]; tmp = newArray; 112 113 114 115 116 117 118 119 /* * Allocate runs-to-be-merged stack (which cannot be expanded). The * stack length requirements are described in listsort.txt. The C * version always uses the same stack length (85), but this was * measured to be too expensive when sorting "mid-sized" arrays (e.g., * 100 elements) in Java. Therefore, we use smaller (but sufficiently * large) stack lengths for smaller arrays. The "magic numbers" in the * computation below must be changed if MIN_MERGE is decreased. See * the MIN_MERGE declaration above for more information. */ int stackLen = (len < 120 ? 5 : len < 1542 ? 10 : len < 119151 ? 19 : 40); runBase = new int[stackLen]; runLen = new int[stackLen]; 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 } /* * The next two methods (which are package private and static) constitute * the entire API of this class. Each of these methods obeys the contract * of the public method with the same signature in java.util.Arrays. */ static void sort(Object[] a) { sort(a, 0, a.length); } static void sort(Object[] a, int lo, int hi) { rangeCheck(a.length, lo, hi); int nRemaining = hi - lo; if (nRemaining < 2) return; // Arrays of size 0 and 1 are always sorted // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) { Page 3 of 17 Trial Exhibit 45.2, Page 3 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 153 154 155 156 157 158 159 int initRunLen = countRunAndMakeAscending(a, lo, hi); binarySort(a, lo, hi, lo + initRunLen); return; } /** * March over the array once, left to right, finding natural runs, * extending short natural runs to minRun elements, and merging runs * to maintain stack invariant. */ ComparableTimSort ts = new ComparableTimSort(a); int minRun = minRunLength(nRemaining); do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi); 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen); runLen = force; } // Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0); // Merge all remaining runs to complete sort if (DEBUG) assert lo == hi; ts.mergeForceCollapse(); if (DEBUG) assert ts.stackSize == 1; } /** * Sorts the specified portion of the specified array using a binary * insertion sort. This is the best method for sorting small numbers * of elements. It requires O(n log n) compares, but O(n^2) data * movement (worst case). * * If the initial part of the specified range is already sorted, * this method can take advantage of it: the method assumes that the * elements from index {@code lo}, inclusive, to {@code start}, * exclusive are already sorted. * * @param a the array in which a range is to be sorted * @param lo the index of the first element in the range to be sorted * @param hi the index after the last element in the range to be sorted * @param start the index of the first element in the range that is * not already known to be sorted (@code lo <= start <= hi} */ Page 4 of 17 Trial Exhibit 45.2, Page 4 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 208 209 210 211 212 213 214 215 216 217 @SuppressWarnings("fallthrough") private static void binarySort(Object[] a, int lo, int hi, int start) { if (DEBUG) assert lo <= start && start <= hi; if (start == lo) start++; for ( ; start < hi; start++) { @SuppressWarnings("unchecked") Comparable<Object> pivot = (Comparable) a[start]; // Set left (and right) to the index where a[start] (pivot) belongs int left = lo; int right = start; if (DEBUG) assert left <= right; /* * Invariants: * pivot >= all in [lo, left). * pivot < all in [right, start). */ while (left < right) { int mid = (left + right) >>> 1; if (pivot.compareTo(a[mid]) < 0) right = mid; else left = mid + 1; } if (DEBUG) assert left == right; 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 /* * The invariants still hold: pivot >= all in [lo, left) and * pivot < all in [left, start), so pivot belongs at left. Note * that if there are elements equal to pivot, left points to the * first slot after them -- that's why this sort is stable. * Slide elements over to make room to make room for pivot. */ int n = start - left; // The number of elements to move // Switch is just an optimization for arraycopy in default case switch(n) { case 2: a[left + 2] = a[left + 1]; case 1: a[left + 1] = a[left]; break; default: System.arraycopy(a, left, a, left + 1, n); } a[left] = pivot; 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 } } /** * Returns the length of the run beginning at the specified position in * the specified array and reverses the run if it is descending (ensuring * that the run will always be ascending when the method returns). * * A run is the longest ascending sequence with: * Page 5 of 17 Trial Exhibit 45.2, Page 5 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 * a[lo] <= a[lo + 1] <= a[lo + 2] <= ... * * or the longest descending sequence with: * * a[lo] > a[lo + 1] > a[lo + 2] > ... * * For its intended use in a stable mergesort, the strictness of the * definition of "descending" is needed so that the call can safely * reverse a descending sequence without violating stability. * * @param a the array in which a run is to be counted and possibly reversed * @param lo index of the first element in the run * @param hi index after the last element that may be contained in the run. It is required that @code{lo < hi}. * @return the length of the run beginning at the specified position in * the specified array */ @SuppressWarnings("unchecked") private static int countRunAndMakeAscending(Object[] a, int lo, int hi) { if (DEBUG) assert lo < hi; int runHi = lo + 1; if (runHi == hi) return 1; // Find end of run, and reverse range if descending if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending while(runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0) runHi++; reverseRange(a, lo, runHi); } else { // Ascending while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0) runHi++; } 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 return runHi - lo; } /** * Reverse the specified range of the specified array. * * @param a the array in which a range is to be reversed * @param lo the index of the first element in the range to be reversed * @param hi the index after the last element in the range to be reversed */ private static void reverseRange(Object[] a, int lo, int hi) { hi--; while (lo < hi) { Object t = a[lo]; a[lo++] = a[hi]; a[hi--] = t; } Page 6 of 17 Trial Exhibit 45.2, Page 6 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 } /** * Returns the minimum acceptable run length for an array of the specified * length. Natural runs shorter than this will be extended with * {@link #binarySort}. * * Roughly speaking, the computation is: * * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff). * Else if n is an exact power of 2, return MIN_MERGE/2. * Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k * is close to, but strictly less than, an exact power of 2. * * For the rationale, see listsort.txt. * * @param n the length of the array to be sorted * @return the length of the minimum run to be merged */ private static int minRunLength(int n) { if (DEBUG) assert n >= 0; int r = 0; // Becomes 1 if any 1 bits are shifted off while (n >= MIN_MERGE) { r |= (n & 1); n >>= 1; } return n + r; } /** * Pushes the specified run onto the pending-run stack. * * @param runBase index of the first element in the run * @param runLen the number of elements in the run */ private void pushRun(int runBase, int runLen) { this.runBase[stackSize] = runBase; this.runLen[stackSize] = runLen; stackSize++; } /** * Examines the stack of runs waiting to be merged and merges adjacent runs * until the stack invariants are reestablished: * * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1] * 2. runLen[i - 2] > runLen[i - 1] * * This method is called each time a new run is pushed onto the stack, * so the invariants are guaranteed to hold for i < stackSize upon * entry to the method. */ private void mergeCollapse() { while (stackSize > 1) { int n = stackSize - 2; Page 7 of 17 Trial Exhibit 45.2, Page 7 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) { if (runLen[n - 1] < runLen[n + 1]) n--; mergeAt(n); } else if (runLen[n] <= runLen[n + 1]) { mergeAt(n); } else { break; // Invariant is established } } } /** * Merges all runs on the stack until only one remains. is * called once, to complete the sort. */ private void mergeForceCollapse() { while (stackSize > 1) { int n = stackSize - 2; if (n > 0 && runLen[n - 1] < runLen[n + 1]) n--; mergeAt(n); } } This method /** * Merges the two runs at stack indices i and i+1. Run i must be * the penultimate or antepenultimate run on the stack. In other words, * i must be equal to stackSize-2 or stackSize-3. * * @param i stack index of the first of the two runs to merge */ @SuppressWarnings("unchecked") private void mergeAt(int i) { if (DEBUG) assert stackSize >= 2; if (DEBUG) assert i >= 0; if (DEBUG) assert i == stackSize - 2 || i == stackSize - 3; int base1 = runBase[i]; int len1 = runLen[i]; int base2 = runBase[i + 1]; int len2 = runLen[i + 1]; if (DEBUG) assert len1 > 0 && len2 > 0; if (DEBUG) assert base1 + len1 == base2; /* * Record the length of the combined runs; if i is the 3rd-last * run now, also slide over the last run (which isn't involved * in this merge). The current run (i+1) goes away in any case. */ runLen[i] = len1 + len2; if (i == stackSize - 3) { runBase[i + 1] = runBase[i + 2]; runLen[i + 1] = runLen[i + 2]; } stackSize--; /* Page 8 of 17 Trial Exhibit 45.2, Page 8 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 425 * Find where the first element of run2 goes in run1. Prior elements * in run1 can be ignored (because they're already in place). */ int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0); if (DEBUG) assert k >= 0; base1 += k; len1 -= k; if (len1 == 0) return; 426 427 428 429 430 431 432 433 434 435 436 /* * Find where the last element of run1 goes in run2. Subsequent elements * in run2 can be ignored (because they're already in place). */ len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a, base2, len2, len2 - 1); if (DEBUG) assert len2 >= 0; if (len2 == 0) return; 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 // Merge remaining runs, using tmp array with min(len1, len2) elements if (len1 <= len2) mergeLo(base1, len1, base2, len2); else mergeHi(base1, len1, base2, len2); } /** * Locates the position at which to insert the specified key into the * specified sorted range; if the range contains an element equal to key, * returns the index of the leftmost equal element. * * @param key the key whose insertion point to search for * @param a the array in which to search * @param base the index of the first element in the range * @param len the length of the range; must be > 0 * @param hint the index at which to begin the search, 0 <= hint < n. * The closer hint is to the result, the faster this method will run. * @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k], * pretending that a[b - 1] is minus infinity and a[b + n] is infinity. * In other words, key belongs at index b + k; or in other words, * the first k elements of a should precede key, and the last n k * should follow it. */ private static int gallopLeft(Comparable<Object> key, Object[] a, int base, int len, int hint) { if (DEBUG) assert len > 0 && hint >= 0 && hint < len; int lastOfs = 0; Page 9 of 17 Trial Exhibit 45.2, Page 9 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 474 475 476 int ofs = 1; if (key.compareTo(a[base + hint]) > 0) { // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs] int maxOfs = len - hint; while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) { lastOfs = ofs; ofs = (ofs << 1) + 1; if (ofs <= 0) // int overflow ofs = maxOfs; } if (ofs > maxOfs) ofs = maxOfs; 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 // Make offsets relative to base lastOfs += hint; ofs += hint; } else { // key <= a[base + hint] // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs] final int maxOfs = hint + 1; while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) { lastOfs = ofs; ofs = (ofs << 1) + 1; if (ofs <= 0) // int overflow ofs = maxOfs; } if (ofs > maxOfs) ofs = maxOfs; 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 // Make offsets relative to base int tmp = lastOfs; lastOfs = hint - ofs; ofs = hint - tmp; } if (DEBUG) assert -1 <= lastOfs && lastOfs < ofs && ofs <= len; /* * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere * to the right of lastOfs but no farther right than ofs. Do a binary * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs]. */ lastOfs++; while (lastOfs < ofs) { int m = lastOfs + ((ofs - lastOfs) >>> 1); 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 if (key.compareTo(a[base + m]) > 0) lastOfs = m + 1; // a[base + m] < key else ofs = m; // key <= a[base + m] } if (DEBUG) assert lastOfs == ofs; key <= a[base + ofs] return ofs; // so a[base + ofs - 1] < } Page 10 of 17 Trial Exhibit 45.2, Page 10 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 /** * Like gallopLeft, except that if the range contains an element equal to * key, gallopRight returns the index after the rightmost equal element. * * @param key the key whose insertion point to search for * @param a the array in which to search * @param base the index of the first element in the range * @param len the length of the range; must be > 0 * @param hint the index at which to begin the search, 0 <= hint < n. * The closer hint is to the result, the faster this method will run. * @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k] */ private static int gallopRight(Comparable<Object> key, Object[] a, int base, int len, int hint) { if (DEBUG) assert len > 0 && hint >= 0 && hint < len; int ofs = 1; int lastOfs = 0; if (key.compareTo(a[base + hint]) < 0) { // Gallop left until a[b+hint - ofs] <= key < a[b+hint lastOfs] int maxOfs = hint + 1; while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) { lastOfs = ofs; ofs = (ofs << 1) + 1; if (ofs <= 0) // int overflow ofs = maxOfs; } if (ofs > maxOfs) ofs = maxOfs; // Make offsets relative to b int tmp = lastOfs; lastOfs = hint - ofs; ofs = hint - tmp; } else { // a[b + hint] <= key // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs] int maxOfs = len - hint; while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) { lastOfs = ofs; ofs = (ofs << 1) + 1; if (ofs <= 0) // int overflow ofs = maxOfs; } if (ofs > maxOfs) ofs = maxOfs; // Make offsets relative to b lastOfs += hint; ofs += hint; } Page 11 of 17 Trial Exhibit 45.2, Page 11 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 577 578 579 580 if (DEBUG) assert -1 <= lastOfs && lastOfs < ofs && ofs <= len; /* * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to * the right of lastOfs but no farther right than ofs. Do a binary * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs]. */ lastOfs++; while (lastOfs < ofs) { int m = lastOfs + ((ofs - lastOfs) >>> 1); 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 if (key.compareTo(a[base + m]) < 0) ofs = m; // key < a[b + m] else lastOfs = m + 1; // a[b + m] <= key } if (DEBUG) assert lastOfs == ofs; < a[b + ofs] return ofs; // so a[b + ofs - 1] <= key } /** * Merges two adjacent runs in place, in a stable fashion. The first * element of the first run must be greater than the first element of the * second run (a[base1] > a[base2]), and the last element of the first run * (a[base1 + len1-1]) must be greater than all elements of the second run. * * For performance, this method should be called only when len1 <= len2; * its twin, mergeHi should be called if len1 >= len2. (Either method * may be called if len1 == len2.) * * @param base1 index of first element in first run to be merged * @param len1 length of first run to be merged (must be > 0) * @param base2 index of first element in second run to be merged * (must be aBase + aLen) * @param len2 length of second run to be merged (must be > 0) */ @SuppressWarnings("unchecked") private void mergeLo(int base1, int len1, int base2, int len2) { if (DEBUG) assert len1 > 0 && len2 > 0 && base1 + len1 == base2; // Copy first run into temp array Object[] a = this.a; // For performance Object[] tmp = ensureCapacity(len1); System.arraycopy(a, base1, tmp, 0, len1); int cursor1 = 0; int cursor2 = base2; int dest = base1; // Indexes into tmp array // Indexes int a // Indexes int a // Move first element of second run and deal with degenerate Page 12 of 17 Trial Exhibit 45.2, Page 12 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 cases a[dest++] = a[cursor2++]; if (--len2 == 0) { System.arraycopy(tmp, cursor1, a, dest, len1); return; } if (len1 == 1) { System.arraycopy(a, cursor2, a, dest, len2); a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge return; } int minGallop = this.minGallop; // Use local variable for performance outer: while (true) { int count1 = 0; // Number of times in a row that first run won int count2 = 0; // Number of times in a row that second run won 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 /* * Do the straightforward thing until (if ever) one run starts * winning consistently. */ do { if (DEBUG) assert len1 > 1 && len2 > 0; if (((Comparable) a[cursor2]).compareTo(tmp[cursor1]) < 0) { a[dest++] = a[cursor2++]; count2++; count1 = 0; if (--len2 == 0) break outer; } else { a[dest++] = tmp[cursor1++]; count1++; count2 = 0; if (--len1 == 1) break outer; } } while ((count1 | count2) < minGallop); /* * One run is winning so consistently that galloping may be a * huge win. So try that, and continue galloping until (if ever) * neither run appears to be winning consistently anymore. */ do { if (DEBUG) assert len1 > 1 && len2 > 0; count1 = gallopRight((Comparable) a[cursor2], tmp, cursor1, len1, 0); if (count1 != 0) { System.arraycopy(tmp, cursor1, a, dest, count1); dest += count1; cursor1 += count1; Page 13 of 17 Trial Exhibit 45.2, Page 13 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 677 678 679 680 681 682 683 684 685 len1 -= count1; if (len1 <= 1) // len1 == 1 || len1 == 0 break outer; } a[dest++] = a[cursor2++]; if (--len2 == 0) break outer; count2 = gallopLeft((Comparable) tmp[cursor1], a, cursor2, len2, 0); if (count2 != 0) { System.arraycopy(a, cursor2, a, dest, count2); dest += count2; cursor2 += count2; len2 -= count2; if (len2 == 0) break outer; } a[dest++] = tmp[cursor1++]; if (--len1 == 1) break outer; minGallop--; } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP); if (minGallop < 0) minGallop = 0; minGallop += 2; // Penalize for leaving gallop mode } // End of "outer" loop this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 if (len1 == 1) { if (DEBUG) assert len2 > 0; System.arraycopy(a, cursor2, a, dest, len2); a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge } else if (len1 == 0) { throw new IllegalArgumentException( "Comparison method violates its general contract!"); } else { if (DEBUG) assert len2 == 0; if (DEBUG) assert len1 > 1; System.arraycopy(tmp, cursor1, a, dest, len1); } } /** * Like mergeLo, except that this method should be called only if * len1 >= len2; mergeLo should be called if len1 <= len2. (Either method * may be called if len1 == len2.) * * @param base1 index of first element in first run to be merged * @param len1 length of first run to be merged (must be > 0) * @param base2 index of first element in second run to be merged * (must be aBase + aLen) * @param len2 length of second run to be merged (must be > 0) */ @SuppressWarnings("unchecked") private void mergeHi(int base1, int len1, int base2, int len2) { if (DEBUG) assert len1 > 0 && len2 > 0 && base1 + len1 == base2; Page 14 of 17 Trial Exhibit 45.2, Page 14 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 // Copy second run into temp array Object[] a = this.a; // For performance Object[] tmp = ensureCapacity(len2); System.arraycopy(a, base2, tmp, 0, len2); int cursor1 = base1 + len1 - 1; int cursor2 = len2 - 1; int dest = base2 + len2 - 1; // Indexes into a // Indexes into tmp array // Indexes into a // Move last element of first run and deal with degenerate cases a[dest--] = a[cursor1--]; if (--len1 == 0) { System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2); return; } if (len2 == 1) { dest -= len1; cursor1 -= len1; System.arraycopy(a, cursor1 + 1, a, dest + 1, len1); a[dest] = tmp[cursor2]; return; } int minGallop = this.minGallop; // Use local variable for performance outer: while (true) { int count1 = 0; // Number of times in a row that first run won int count2 = 0; // Number of times in a row that second run won 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 /* * Do the straightforward thing until (if ever) one run * appears to win consistently. */ do { if (DEBUG) assert len1 > 0 && len2 > 1; if (((Comparable) tmp[cursor2]).compareTo(a[cursor1]) < 0) { a[dest--] = a[cursor1--]; count1++; count2 = 0; if (--len1 == 0) break outer; } else { a[dest--] = tmp[cursor2--]; count2++; count1 = 0; if (--len2 == 1) break outer; } } while ((count1 | count2) < minGallop); /* * One run is winning so consistently that galloping may be a * huge win. So try that, and continue galloping until (if ever) Page 15 of 17 Trial Exhibit 45.2, Page 15 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 787 788 789 790 791 * neither run appears to be winning consistently anymore. */ do { if (DEBUG) assert len1 > 0 && len2 > 1; count1 = len1 - gallopRight((Comparable) tmp[cursor2], a, base1, len1, len1 - 1); if (count1 != 0) { dest -= count1; cursor1 -= count1; len1 -= count1; System.arraycopy(a, cursor1 + 1, a, dest + 1, count1); if (len1 == 0) break outer; } a[dest--] = tmp[cursor2--]; if (--len2 == 1) break outer; 792 793 794 795 796 797 798 799 800 801 802 803 804 count2 = len2 - gallopLeft((Comparable) a[cursor1], tmp, 0, len2, len2 - 1); if (count2 != 0) { dest -= count2; cursor2 -= count2; len2 -= count2; System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2); if (len2 <= 1) break outer; // len2 == 1 || len2 == 0 } a[dest--] = a[cursor1--]; if (--len1 == 0) break outer; minGallop--; } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP); if (minGallop < 0) minGallop = 0; minGallop += 2; // Penalize for leaving gallop mode } // End of "outer" loop this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 if (len2 == 1) { if (DEBUG) assert len1 > 0; dest -= len1; cursor1 -= len1; System.arraycopy(a, cursor1 + 1, a, dest + 1, len1); a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge } else if (len2 == 0) { throw new IllegalArgumentException( "Comparison method violates its general contract!"); } else { if (DEBUG) assert len1 == 0; if (DEBUG) assert len2 > 0; System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2); } } /** Page 16 of 17 Trial Exhibit 45.2, Page 16 of 17 G:\eclair21 - GOOGLE-00-00000525\dalvik\libcore\luni\src\main\java\java\util\Com mparableTimSort.java 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 } * Ensures that the external array tmp has at least the specified * number of elements, increasing its size if necessary. The size * increases exponentially to ensure amortized linear time complexity. * * @param minCapacity the minimum required capacity of the tmp array * @return tmp, whether or not it grew */ private Object[] ensureCapacity(int minCapacity) { if (tmp.length < minCapacity) { // Compute smallest power of 2 > minCapacity int newSize = minCapacity; newSize |= newSize >> 1; newSize |= newSize >> 2; newSize |= newSize >> 4; newSize |= newSize >> 8; newSize |= newSize >> 16; newSize++; if (newSize < 0) // Not bloody likely! newSize = minCapacity; else newSize = Math.min(newSize, a.length >>> 1); @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"}) Object[] newArray = new Object[newSize]; tmp = newArray; } return tmp; } /** * Checks that fromIndex and toIndex are in range, and throws an * appropriate exception if they aren't. * * @param arrayLen the length of the array * @param fromIndex the index of the first element of the range * @param toIndex the index after the last element of the range * @throws IllegalArgumentException if fromIndex > toIndex * @throws ArrayIndexOutOfBoundsException if fromIndex < 0 * or toIndex > arrayLen */ private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) { if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex+")"); if (fromIndex < 0) throw new ArrayIndexOutOfBoundsException(fromIndex); if (toIndex > arrayLen) throw new ArrayIndexOutOfBoundsException(toIndex); } Page 17 of 17 Trial Exhibit 45.2, Page 17 of 17

Disclaimer: Justia Dockets & Filings provides public litigation records from the federal appellate and district courts. These filings and docket sheets should not be considered findings of fact or liability, nor do they necessarily reflect the view of Justia.


Why Is My Information Online?