Apple, Inc. v. Motorola, Inc. et al

Filing 12

AMENDED COMPLAINT for Patent Infringement against Motorola Mobility, Inc., Motorola, Inc., filed by Apple, Inc.. (Attachments: #1 Exhibit A - '949 patent, #2 Exhibit B - '002 patent, #3 Exhibit C - '315 patent, #4 Exhibit D - RE '486 patent, #5 Exhibit E - '354 patent, #6 Exhibit F - '263 patent, #7 Exhibit G - '983 patent, #8 Exhibit H - '705 patent, #9 Exhibit I - '647 patent, #10 Exhibit J - '852 patent, #11 Exhibit K - '131 patent, #12 Exhibit L - '337 patent, #13 Exhibit M - '867 patent, #14 Exhibit N - '721 patent, #15 Exhibit O - '599 patent) (Peterson, James) [Transferred from Wisconsin Western on 12/1/2011.]

Download PDF
EXHIBIT B 111111111111111111111111111111111111111111111111111111111111111111111111111 US006493002Bl (54) United States Patent (10) Christensen (12) (45) 5,202,961 5,416,895 5,428,730 5,588,105 5,617,526 5,640,498 5,644,334 5,659,693 5,678,034 5,757,371 5,825,357 6,133,898 METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING CONTROL AND STATUS INFORMATION IN A COMPUTER SYSTEM Steven W. Christensen, Milpitas, CA (US) (75) Inventor: (73) Assignee: Apple Computer, Inc., Cupertino, CA (US) ( *) Notice: This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.c. 154(a)(2). Filed: Related U.S. Application Data Continuation of application No. 08/316,237, filed on Sep. 30, 1994, now abandoned. (51) (52) (58) Int. CI? G06F 3/00 U.S. Cl. 345/779; 345/772 395/345, 350, Field of Search 395/352,354,326,339,340,341, 973, 974; 345/348, 350, 352, 354, 326, 339, 340, 341, 973, 974, 700, 764, 771-772, 776-779, 781, 784, 788, 791, 798-800, 833, 856 A A A A A A * * * * * 8/1989 12/1989 1/1990 6/1990 2/1992 9/1992 Takagi Takagi et al. Gest et al. Takagi et al. Takagi Hullot et al. IQ FILE I . -. i~ - 0483777 483777 0584391 584392 ... J~ 12.6 MB IN DISK CJ APPLEUNK POWERBOOK EDmON ~ MACTERt.lINAL ~ MOVI PLAYER .. - - - - - 313.6 MB AVAILABLE CJ CJ CJ CJ EXPRESS t.lODEM REMOTE ACCESS CUENT FOLDER 0 RESEDIT TOOLS 4f13 SIMPLE TEXT WORD ~ ::::~N~~:E QUICKTIM~ ::: rIT___ ~ 8:51K 2ITEMS. 12.6 MB IN DISK $J SERlAl TOOL 33K : ~T~~L ~~~ Do, Q!IClolll 0 00000100000 W0 A 50 Claims, 13 Drawing Sheets APPLI{ffIONS·· 10 ITEMS Al 10/1991 5/1992 8/1992 3/1994 An interactive computer-controlled display system having a processor, a data display screen, a cursor control device for interactively positioning a cursor on the data display screen, and a window generator that generates and displays a window on a data display screen. The window region provides status and control information in one or more data display areas. The individiual data display areas may be controlled through the use of controls and indicators on the control strip itself using cursor control keys. EDIT VIEW LABEL SPECIAL EXTENSIONS A2 A ABSTRACT (57) 345/794 345/166 345/841 345/453 345/803 345/790 NAME 345/720 707/503 345/740 345/779 345/779 345/790 345/419 345/779 345/520 345/779 345/779 345/790 Primary Examiner---Crescelle N. dela Torre (74) Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor & Zafman LLP U.S. PATENT DOCUMENTS 4,862,389 4,885,704 4,896,291 4,931,957 5,091,866 5,146,556 Anderson et al. Baker et al. Foster et al. Gran et al. Chew Jones et al. Hansen et al. Chew Gran et al. Malamud et al. Ludolph et al. * cited by examiner References Cited (56) * * * * * * * * * 5/1995 6/1995 12/1996 4/1997 6/1997 7/1997 8/1997 10/1997 5/1998 10/1998 10/2000 EPO 0 584 392 A1, Cohausz, English Translation of the German patent document, Mar. 1992.* "PCT Written Opinion", Oct. 4, 1996. Steven Harris, et al.: "Inside WordPerfect 6 for Windows", 1994, USA, pp. 1104-1108. Mark A. Benge, Matt Smith: "Designing Custom Controls", Spring 1993, USA, pp. 72-85. International Search Report, PCT/US 95/11025, Jan. 03, 1996. Mar. 20, 1997 (63) * 4/1993 Mills et al. OTHER PUBLICATIONS Appl. No.: 08/821,004 (22) A A A A A A A A A A A A FOREIGN PATENT DOCUMENTS EP EP EP EP Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.c. 154(b) by 0 days. (21) Patent No.: US 6,493,002 BI Date of Patent: *Dec. 10,2002 __._ .. ..._ _:~ 313.6 MB A '1-4I11~~II~),jII(]) F 11111(1)11 :00;49 .4lollr-[) 109 108 [DISPLAY - ~ TIMER 150 IFLOPPY DRIVE DISK ~ 126 f".rV jW [ SOUND CHIP 125 '" 7 '" 181 .- "- 130 184 TO CLOCK GENERATOR 160 L CURSOR CONTROL 123 1 J KEYBOARD 122 154 ~ 140 1INTERFA/0 FROM I CE NONVOLATILE MEMORY 106 MAIN MEMORY 104 V DD 103 PROCESSOR .l- GENERATOR CLOCK 160 eLK v "- v h ~ .- ;:. LOCAL BUS 100 ) ~ .-- L. DECODER TEMP. ~T1 1 2 7 : SENSOR 127A 140 'I .A K r--- POWER SIGNAL 182 ' - BUS TRANSLATOR/ INTERFACE UNIT I~ j SWITCH V DD 153 HOT INDICATION SIGNAL 183 ---.. ~ TO OTHER COMPONENTS I/O MICROCONTROLLER ~ CONTROLLER I/O BUS 101, CLK- .11-_ 121 1'1 [HARD COpy DEVICE 124 ILAN IMODEM [MASS STORAGE 107 FIG. I POWER SUPPLY152 d • 'JJ. • SIZE 12.6 MB IN DISK 83K 33K 2BK 61K SERIAl TOOL TEXT TOOL TIY TOOL ~ ~ ~ 21TEMS I I WORD 12.6 MB IN DISK TOOLS [2] \ - Lt - 313.6 MB A\ SIMPLE TEXT '/" FIG, 2A 200 \.. IQ!:dll(~111[g ~III 0 00000100000 W~III-*- DDDDDDDD.IIID~II~~II~~~II~"III<l) ~11C911 :OO~9 ~1I[)11I:~9J 831K ~ 66K ~[Ef PRINTMONITOR QUICKTIME'TU g RESEDIT PRINTER SHARE MOVIEPLAYER [] [] ~ 0 REMOTE ACCESS CUENT FOLDER [] MACTERMINAL .. 0:: ~ .. EXPRESS MODEM APPLEUNK POWERBOOK EDmON ~ 313.6 MB AVAILABLE [] 10 ITEMS APPLICATIONS [] D ~ ~ fi ~ ,. [ L: r; l.= rr NAME EXTENSIONS QFILE EDIT VIEW LABEL SPECIAL & ~m CDC d • 'JJ. • u.s. Patent Dec. 10, 2002 200~ Sheet 3 of 13 US 6,493,002 BI MODULE DISPLAY AREA CLOSE BOX 202 201 DRAG/SIZE TAB 203 LEFT SCROLL ARROW 204 RIGHT SCROLL ARROW 205 FIG. 28 -------------, HIDE BATIERY LEVEL HIDE BATIERY CONSU~TI6N HIDE TIME REMAINING ~ 0 00000100000 If ~ ~«- 0000 FIG. 2C BATIERY MONITOR THE POWER ADAPTER IS CONNECTED AND RECHARGING ONE OF THE BATIERIES. FIG. 2D u.s. Patent o~ Dec. 10,2002 0 000001 DODO ~ ~ US 6,493,002 BI Sheet 4 of 13 -:0.- §3o DDDDOI~DDD~~~-#- 00000000 ~ 0 ~ \ 00000000 ~~D ~~ .a. ~o ODD~IODDDO W~-*- 00000000 • ~D ~ ~ .a. §3o DDDDOIODDDDW~EI- ODODOO~D ~~ 23 -#- 00000000 ~[[ODDDOIODDDD ~D ~ ~ FIG. 2E u.s. Patent Dec. 10,2002 ( + Sheet 5 of 13 US 6,493,002 BI 210 (211 o00000100000 W~ mo7 - 00000100000 W~~~ 212 FIG. 2F CONTROL STRIP @ SHOW CONTROL STRIP o HIDE CONTROL STRIP FIG. 3 ~ u.s. Patent US 6,493,002 BI Sheet 6 of 13 Dec. 10, 2002 MAIN LOOP (CALLED BY OPERATING SYSTEM) FIG. 4 SAVE PREVIOUS CONTEXT, SETUP STRIP'S CONTEXT 401 SECONDARY INITIALIZATION RUN SECONDARY INITIALIZATION COMPLETE? 403 YES 404 DETERMINE THE USER E.VENT TYPE NULL EVENT (IDLE)? RUN IDLE TASKS YES 406 405 NO MOUSE CLICK? >---~ PROCESS MOUSE CLICK YES 407 408 NO RESTORE PREVIOUS CONTEXT 409 EXIT 1------1 u.s. Patent Dec. 10,2002 US 6,493,002 BI Sheet 7 of 13 CONTROL STRIP MAIN LOOP ,IRUN SECONDARY INITALIZATION SECONDARY INITIALIZATION NO CREATE THE STRIP'S WINDOW 502 NO YES INITIALIZE STRIP'S FONT, COLOR 504 OPEN,INITIALIZE EXTERNAL MODULES 505 SET STRIP'S DEFAULT SCREEN LOCATION,SIZE LOAD USER CONFIGURATION DRAW THE STRIP'S CONTENTS FIG. 5 506 507 508 u.s. Patent Dec. 10,2002 US 6,493,002 BI Sheet 8 of 13 MODULES OPEN. INITIALIZE EXTERNAL MODULES 505 NO OPEN MODULE FILE 602 LOAD MODULE CODE INTO MEMORY CALL MODULE TO INITIALIZE ITSELF CALL MODULE TO GET MODULE'S FEATURES CALL MODULE TO GET ITS DISPLAY WIDTH 603 604 605 606 CLOSE MODULE FILE 607 FIG. 6 u.s. Patent US 6,493,002 BI Sheet 9 of 13 Dec. 10,2002 CONTROL STRIP MAIN LOOP LDRAW THE STRIP'S CONTENTS DRAW THE STRIP S CONTENTS "'>------1\10·---. MORE MODULES "'>-----NO-----' TO DRAW? 702 Y S THIS MODULE NEED TO BE REDRAWN? N 703 704 IS THIS MODULE A BUTTON? YES NO DRAW STATUS-ONLY BACKGROUND GRAGHICS DRAW BUTTON BACKGROUND GRAGHICS 705 L - -_ _ ~ 706 CALL MODULE TO DRAW ITSELF FIG. 7 14------J u.s. Patent Dec. 10, 2002 RUN IDLE TASKS US 6,493,002 BI Sheet 10 of 13 CONTROL STRIP MAIN LOOP LRUN IDLE TASKS 801 DRAW THE STRIP'S CONTENTS WINDOW UPDATE PENDING? 802 NO HAS STRIP'S CONFIGURATION CHANGED? YES 803 IS IT SAFE TO SAVE NOW? NO YE SAVE STRIP'S CONFIGURATION TO DISK 804 805 NO CALL CURRENT IDLE MODULE TO ~ RUN ITS IDLE TASK 806 807 808 DOES MODUL NEED TO SAVE SETTINGS? YE IS IT SAFE TO SAVE NOW? 809 NO 810 NO 812 FIG. 8 SAVE MODULE'S SETTINGS TO DISK 811 u.s. Patent US 6,493,002 BI Sheet 11 of 13 Dec. 10, 2002 CONTROL STRIP MAIN LOOP !-PROCESS MOUSE CLICK PROCESS MOUSE CLICK 901 DETERMINE WHICH MODULE WAS CLICKED ON 902 YES MOVE MODULE'S DISPLAY, OR MOVE ENTIRE STRIP 904 NO CLICKABLE MODULE? ;::--- NO-~ 905 TRACK THE MOUSE CLICK MOUSE STILL IN MODULE'S BOUNDS? >--NO---.l CALL THE MODULE TO PROCESS THE CLICK 908 POST PROCESS THE CLICK L-- FIG. 9 909 ~ EXIT u.s. Patent Dec. 10, 2002 Sheet 12 of 13 US 6,493,002 BI CONTROL STRIP MAIN LOOP !-POST PROCESS THE CLICK MODULE WANTS TO UPDATE SETTINGS? YES FLAG THAT THIS MODULE HAS A SAVE PENDING 1002 1001 NO MODULE NEEDS TO RESIZE DISPLAY? YES CALL MODULE TO UPDATE ITS WIDTH 1003 1004 NO MODULE WANTS TO BE CLOSED? YES CLOSE THE MODULE 1006 1005 NO RESIZE OR CLOSE? YES REPOSITION AND REDRAW MODULE DISPLAYS 1008 1007 MODULE HELP STATE CHANGE? YES INVALIDATE OLD HELP STATE 1 10 1009 NO e&m FIG. 10 u.s. Patent Dec. 10,2002 Sheet 13 of 13 US 6,493,002 BI -+oJ I I .c C'l c==J Ck: Q) [Ill] .c IIIIIIIl 0 om OJ]] • 0. 0 (/) 0. L- ~ a CD ...-.. ex) .c .... .; '--' I I .....J 0. 0 c=J OIIIJ .c 0. a L- 1111111111 111111111111 Q) r- ~ 0 (J]J]] - . 0 - 811I118111I I > . ..... '+Q) :...J a. 0 l- .e. 0. a L- C2 a .0 .c -+oJ "0 c=J I ~ ..c: a. a L- C2 0 CD -+oJ Q) 0 CD (/) -. <.!) lJ.... -+oJ .c 0" 0:: C\J 0IIIllIIIlI a lJ... ..c: 0. a L- _lIIlHllml '2 0 <.!) l..L. CD mil ..... .... I OIIIJ (J]J]] 1111111111 rnn ITlIIIIIl ITIIIIJ ITIIIJ c==J c=J -+oJ Q) -I Q) 0. 0 (/) .e. 0. a L- e" L- a CD -. US 6,493,002 Bl 1 2 METHOD AND APPARATUS FOR DISPLAYING AND ACCESSING CONTROL AND STATUS INFORMATION IN A COMPUTER SYSTEM The present invention overcomes these problems by providing a status and control information display. The display of the present invention is in an easily accessible format. Also, the display may be configured to permanently display in a visible manner control and status indicia. 5 This is a continuation of application Ser. No. 08/316,237, filed Sep. 30, 1994, now abandoned. SUMMARY OF THE INVENTION FIELD OF THE INVENTION The present invention relates to the field of computer systems; particularly, the present invention relates to displaying a status and control function bar or window to enable access of user selected indicia to a computer system user. 10 15 BACKGROUND OF THE INVENTION An interactive computer-controlled display system is described. In the present invention, the display system includes a processor, a data display screen, and a cursor control device for interactively positioning a cursor on the data display screen. The present invention also includes a window generator that generates and displays a window (e.g., a control strip) on a data display screen. In one embodiment, the window comprises a control and/or status window for display on the desktop of the computer system The window displays graphics depicting at least one display area of indicia. The individual data areas may be controlled through the use of controls and indicators in the window itself using cursor control keys. Typically, a computer system contains a processor, a bus, and other peripheral devices. The processor is responsible for executing instructions using the data in the computer system. The bus is used by the processor and the peripheral 20 devices for transferring information between one another. BRIEF DESCRIPTION OF THE DRAWINGS The information on the bus usually includes data, address The present invention is illustrated by way of example, and control signals. The peripheral devices comprise storage 25 and not by way of limitation, in the figures of the accomdevices, input/output (I/O) devices, etc. panying drawings and in which like reference numerals refer Computer systems also include information management to similar elements and in which: systems that coordinate the display of information to the user. Currently, the art in computer display management FIG. 1 is a block diagram of one embodiment of the computer system of the present invention. provides the capability of displaying data in rectangular portions (commonly referred to as windows) of a display 30 FIG. 2A displays a computer desktop illustrating the screen. Such information management systems include the control strip of the present invention as well as opened Finder™ interface of the computer systems manufactured by windows. Apple Computer, Inc. of Cupertino, Calif. Controls are FIG. 2B illustrates one embodiment of the control strip of typically provided to resize and move windows within the the present invention. confines of the physical display boundaries. 35 FIG. 2C illustrates a pop-up menu displayed from the Windows may be used to display information regarding control strip of the present invention. application programs, as well as information produced by FIG. 2D illustrates a help balloon displayed from the system programs, that are run on the computer system. control strip of the present invention. Many of these system and control programs provide status FIG. 2E illustrates the process of moving a display area and control information and functionality. Some of the 40 from one position to another in the control strip. system control programs also provide options with respect to FIG. 2F shows the control strip window graphics generthe information they provide and the functions they perform. ated by processing logic being combined with graphics These options can be accessed and/or selected by moving a generated by a module to illustrate the creation of the cursor at a predetermined point in the window and "clicking" a mouse or performing requisite key strokes. Access to 45 resulting control strip. FIG. 3 illustrates one embodiment of the control panel of these programs may require locating the program (e.g., the present invention. locating and entering a folder) before execution. The time necessary to access such programs may be unduly long. It is FIG. 4 is a flow chart of one embodiment of the process desirable to provide a less obtrusive manner of accessing for the control strip of the present invention. such system and control programs. 50 FIG. 5 is a flow chart of one embodiment of the secondary The computer system is often capable of displaying initialization process of the present invention. multiple windows or data areas on the display screen at the FIG. 6 is a flow chart of one embodiment of the open and same time. Windows may overlap each other. The informainitialization process for the external modules of the present tion contained in the portion of the window that is overinvention. lapped is not visible. The window that is entirely visible to 55 FIG. 7 is a flow chart of one embodiment of the process the computer user is typically the active window. Therefore, for drawing the contents of the control strip of the present a program, such as a system or control program may be invention. running, while another program displaying information in FIG. 8 is a flow chart of one embodiment of the process another window is selected as active and thereafter covers, for running idle tasks in the sent invention. partially or completely, the windows or data areas displayed 60 FIG. 9 is a flow chart of one embodiment of the process by the system/control program. Sometimes the user may for responding to a mouse click occurring in the control strip wish to have an unobstructed view of the system/control of the present invention. data area, regardless of the window selected as active (even FIG. 10 is a flow chart of one embodiment of the process when the windows overlap each other). Thus, it is desirable at times to have windows that are always visible to the user. 65 for post processing a mouse click in the present invention. However, it is also desirable to be able to eliminate that FIG. 11 illustrates a bar graph for display in a data display window at times based on the user's requirements. area in the control strip of the present invention. US 6,493,002 Bl 3 4 FIG. 12 illustrates a bar graph that results after using arrow direction icons. programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these machines will appear from the description below. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. DETAILED DESCRIPTION OF IRE INVENTION 5 A method and apparatus for providing status and control indicia. In the following detailed description of the present invention numerous specific details are set forth, such as types of status indicia, instruction names, etc., in order to provide a thorough understanding of the present invention. 10 OVERVIEW OF THE COMPUTER SYSTEM OF However, it will be apparent to one skilled in the art that the IRE PRESENT INVENTION present invention may be practiced without these specific details. In other instances, well-known structures and Referring to FIG. 1, an overview of a computer system of the present invention is shown in block diagram form. The devices are shown in black diagram form, rather than in 15 present invention may be implemented on a general purpose detail, in order to avoid obscuring the preset invention. microcomputer, such as one of the members of the Apple The present description includes material protected by family of personal computers, one of the members of the copyrights, such as illustrations of graphical user interface IBM personal computer family, or one of several other images which the assignee of the present invention owns. computing and assistant devices which are presently comThe assignee hereby reserves its rights, including copyright, in these materials, and each such material should be 20 mercially available. Of course, the present invention may also be implemented on a multi-user system while encounregarded as bearing the following notice: Copyright Apple tering all of the costs, speed, and function advantages and Computer, Inc., 1993. The copyright owner has no objection disadvantages available with these machines. The preferred to the facsimile reproduction by anyone of the patent docuembodiment of the present invention is implemented on an ment or the patent disclosure, as it appears in the Patent and Trademark Office file or records, but otherwise reserves all 25 Apple PowerBook™ computer system developed by the assignee of the present invention. copyrights whatsoever. As illustrated in FIG. 1, the computer system of the Some portions of the detailed descriptions which follow present invention generally comprises a local bus or other are presented in terms of algorithms and symbolic representations of operations on data bits within a computer 30 communication means 100 for communicating information, a processor 103 coupled with local bus 100 for processing memory. These algorithmic descriptions and representations information, a random access memory (RAM) or other are the means used by those skilled in the data processing dynamic storage device 104 (commonly referred to as a arts to most effectively convey the substance of their work main memory) coupled with local bus 100 for storing to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps 35 information and instructions for processor 103, and a readonly memory (ROM) or other non-volatile storage device leading to a desired result. The steps are those requiring 106 coupled with local bus 100 for storing non-volatile physical manipulations of physical quantities. Usually, information and instructions for processor 103. though not necessarily, these quantities take the form of The computer system of the present invention also electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipu- 40 includes an input/output (I/O) bus or other communication means 101 for communication information in the computer lated. It has proven convenient at times, principally for system. A data storage device 107, such as a magnetic tape reasons of common usage, to refer to these signals as bits, and disk drive, including its associated controller circuitry, values, elements, symbols, characters, terms, numbers, or is coupled to I/O bus 101 for storing information and the like. It should be borne in mind, however, that all of these and 45 instructions. A display device 121, such as a cathode ray tube, liquid crystal display, etc., including its associated similar terms are to be associated with the appropriate controller circuitry, is also coupled to I/O bus 101 for physical quantities and are merely convenient labels applied displaying information to the computer user, as well as a to these quantities. Unless specifically stated otherwise as hard copy device 124, such as a plotter or printer, including apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing 50 its associated controller circuitry for providing a visual representation of the computer images. Hard copy device terms such as "processing" or "computing" or "calculating" 124 is coupled with processor 103, main memory 104, or "determining" or "displaying" or the like, refer to the non-volatile memory 106 and mass storage device 107 action and processes of a computer system, or similar through I/O bus 101 and bus translator/interface unit 140. A electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities 55 modem 108 and an ethernet local area network 109 are also coupled to I/O bus 101. within the computer system's registers and memories into Bus interface unit 140 is coupled to local bus 100 and I/O other data similarly represented as physical quantities within bus 101 and acts as a gateway between processor 103 and the computer system memories or registers or other such the I/O subsystem. Bus interface unit 140 may also provide information storage, transmission or display devices. The present invention also relates to apparatus for per- 60 translation between signals being sent from units on one of the buses to units on the other bus to allow local bus 100 and forming the operations herein. This apparatus may be speI/O bus 101 to co-operate as a single bus. cially constructed for the required purposes, or it may comprise a general purpose computer selectively activated An I/O controller 130 is coupled to I/O bus 101 and or reconfigured by a computer program stored in the comcontrols access to certain I/O peripherals in the computer puter. The algorithms and displays presented herein are not 65 system. For instance, I/O controller 130 is coupled to controller device 127 that controls access to an alphainherently related to any particular computer or other apparatus. Various general purpose machines may be used with numeric input device 122 including alpha-numeric and other US 6,493,002 Bl 5 6 keys, etc., for communicating information and command selections to processor 103, a cursor control 123, such as a trackball, stylus, mouse, or trackpad, etc., for controlling cursor movement, and a temperature sensor 127A for measuring the internal system temperature. The system also includes a sound chip 125 coupled to I/O controller 130 for providing audio recording and play back. Sound chip 125 may include a sound circuit and its driver which are used to generate various audio signals from the computer system. I/O controller 130 may also provide access to a floppy disk and driver 126. The processor 103 controls I/O controller 130 with its peripherals by sending commands to I/O controller 130 via local bus 100, interface unit 140 and I/O bus 101. Batteries or other power supply 152 may also be included to provide power necessary to run the various peripherals and integrated circuits in the computer system. Power supply 152 is typically a DC power source that provides a constant DC power to various units, particularly processor 103. Various units such as processor 103, display 121, etc., also receive clocking signals to synchronize operations within the computer systems. These clocking signals may be provided by a global clock generator or multiple clock generators, each dedicated to a portion of the computer system. Such a clock generator is shown as clock generator 160. In one embodiment, clock generator 160 comprise a phase-locked loop (PLL) that provides clocking signals to processor 103. In one embodiment, processor 103 is a member of the 68000 family of processors, such as the 68040 processor manufactured by Motorola Corporation of Schaumberg, Ill. The memory in the computer system is initialized to store the operating system as well as other programs, such as file directory routines, control programs, system programs and application programs, and data inputted from I/O controller 130. The operating system running on processor 103 takes care of basic tasks such as starting the system, handling interrupts, moving data to and from memory 104 and peripheral devices via input/output interface unit 140, and managing the memory space in memory 104. In one embodiment, the operating system is stored in ROM 106, while RAM 104 is utilized as the internal memory for the computer system for accessing data and application programs. Processor 103 accesses memory in the computer system via an address bus within bus 100. Commands in connection with the operation of memory in the computer system are also sent from the processor to the memory using bus 100. Bus 100 also includes a bi-directional data bus to communicate data in response to the commands provided by processor 103 under the control of the operating system running on it. Of course, certain implementations and uses of the present invention may neither require nor include all of the above components. For example, in certain implementations a keyboard or cursor control device for inputting information to the system may not be required. Furthermore, the computer system may include additional processing units. the display areas is individually and variably sized. The size of the control strip itself may also be variably sized. In one embodiment, the size may be adjusted such that none, all, or only a portion of the display areas within its boundaries are visible. The size of the control strip may also be varied such that only a portion of one display area is visible in the control strip. FIG. 2A displays a computer desktop illustrating the control strip of the present invention as well as opened windows. FIG. 2B illustrates one embodiment of the control strip of the present invention. Each of the variably sized data areas may be sensitive to user input for control. That is, a user may interact with the individually display data areas. Different parts of the control strip either display information or act as buttons, or both. Note that buttons may display information on their surface. When the user clicks a button, it is highlighted. In one embodiment, buttons may also display additional elements such as pop-up menus (shown in FIG. 2C) or help messages (e.g., balloons shown in FIG. 2D). Thus, in one embodiment, control of the individual data areas is accomplished, in part, through the use of small button controls and indicators in the form of various icons. Each of the display areas is associated with a programming module. Each of the modules provides a specific status or control function. In one embodiment, the module is represented by a disk file containing the code necessary for the module to interact with the control strip as well as other elements such as text, icons, pictures, etc. Modules may be designed to be responsive to selection from cursors via a mouse, trackpad, or cursor control keys, such as on a keyboard. Many of the modules are able to provide control to various system functionality, and may provide menus to do the same. The control strip is a control panel that provides the operating environment for control strip modules. In one embodiment, the control strip runs on any Macintosh™ computer using a System 7.0 or later operating system. The control strip of the present invention may be designed to run on computer systems using other operating systems. In one embodiment, the control strip is implemented in a private window layer that appears in front of the windows of all the application layers. That is, the control strip window appears on top of all application programming windows that may be generated as part of the execution of an application program. This prevents other windows from obscuring it. In one embodiment, processing logic in the computer system may maintain a list of windows ordered from the frontmost window on the screen being at the top of the list and the bottommost window being at the bottom of the list. Processing logic can maintain the control strip window at the top of the list. The control strip of the present invention may include windowing configurations that are shown as being horizontal or vertical on the screen. Furthermore, the present invention is not limited to a single row or column of status and control data areas. In other words, multiple rows and columns of module data areas may be included in the window of the control strip. OVERVIEW OF THE PRESENT INVENTION The present invention provides a control and/or status window for display on the desktop of the computer system. The control and status window will be referred to herein as the control strip. The control strip of the present invention is a window of graphics depicting one or more display areas for control and/or status indicia. In one embodiment, each of 5 10 15 20 25 30 35 40 45 50 55 60 65 CONTROL STRIP MANIPULATION The control strip, such as shown in FIG. 2B, may also be moved to different portions of the display screen. However, in one embodiment, the window for the control strip may be moved to any location on the display as long as the right and/or left edge of the strip is attached to the right or left edge, respectively, of the display. The user may also hold US 6,493,002 Bl 7 8 down the option key and drag the tab 203 of the control strip 200 with the use of a cursor control device (e.g., trackpad, trackball, mouse) to move the control strip to a new position on the display. In one embodiment, the user may adjust the size of the control strip window. Adjustments to the size of the window may comprise either an increase in the height of the window, the width of the window, or both. In one embodiment, only the width of the control strip window may altered. The definition and use of windows is well-known in the art. In one embodiment, the control strip 200 has a tab 203 on its unattached end. The user can drag tab 203 to adjust the length of the strip. By "clicking" on tab 203, i.e. selection through the use of the trackpad, mouse, cursor control keys, etc., the user is able to shift from a minimal control strip size to a maximum control strip size, and vice versa. In its minimal size, the graphics of the modules in the control strip are not visible and only the tab is showing. In its maximum size, all of the modules in the control strip are showing. Recognizing cursor controlled selections through the use of trackpad, trackball, mouse, cursor control keys, etc., as well as the tracking of movements of the cursor made by the same are well-known in the art. Scroll arrows, such as left scroll arrow 204 and right scroll arrow 205, are provided on the control strip that enable the window of the control strip to be scrolled to the left or right, respectively. Use of scroll arrows with windows is wellknown in the art. The user may also hide the control strip. In one embodiment, to make the control strip disappear completely, the user can click the Hide button in the control strip control panel, as described later in conjunction with FIG. 3. A close box 201 is also included in control strip 200 In one embodiment, by holding the option key and clicking a display area, the user can drag the display area to another position in the control strip. An example of the process of moving one display area to another position on the control strip is shown in FIG. 2E. Referring to FIG. 2E, the user selects one of the display areas by, for instance, positioning the cursor over the display area. When the user "clicks" the display area, its border becomes highlighted. While clicking, the display area is dragged to another location in the control strip module display area. When the user has moved the display area to the location of his choice, the user stops "clicking" The control strip display areas are then rearranged. After the user rearranges the parts of the control strip, the new arrangement is saved. The saving operation may be deferred until resources, such as the hard disk is ready (e.g., spinning) or until just before the computer system is shut down or restarted. In other words, in computer systems in which the hard disk is not turned on all the time in order to save power, the saving operation may be deferred until the hard disk has been turned on by another. The control strip may also include a battery monitor that displays the status of the battery or batteries. In one embodiment, the battery monitor displays the current power drain in a manner similar to a car's miles per gallon (MPG) indicator. The needle for the power drain indicator indicates the drain relative to the maximum possible. The control strip of the present invention allows this display to be updated frequently so if the user increased the LCD display screen's brightness level, the needle would animate to denote the consequence of the action. Another control strip module displays the state of File Sharing (e.g., on, off, or users connected) that may be currently employed on the computer system. The file sharing module also lets the user turn file sharing on or off and lets the user open a control panel to control processing to setup file sharing on the computer system. The control strip of the present invention may also provide a module to allow the internal hard disk power to be turned off (to save power), and to indicate whether is currently on or off. The control strip may also provide power settings that allow the user to select between maximum battery conservation or maximum computer performance without opening a control panel. In one embodiment, the power settings portion of the control strip also allow the user to open up the power savings control panel. The control strip of the present invention may also include a function that places the computer in sleep mode or allows the user to select the sound volume. Other modules, for example, may provide time and/or date information, may list currently running programming applications, may indicate the amount of available memory, may control a CD drive, may provide access to audio controls and status information. Therefore, the control strip acts as a status and control function bar, or windowing area, that provides running modules to be displayed in an arrangement that is to be displayed, such an arrangement being modifiable such that the size of the window or bar may be changed. In one embodiment, the control strip is controllable through a control panel. An exemplary display of such control panel is shown in FIG. 3. Use of control panels is well-known in the art. Using the control panel in FIG. 3, the user is able to hide or show the control strip by clicking the corresponding button in the control panel. Note that in one embodiment, the control panel may also be used to change the font and size of the text in the control strip window. 5 10 15 20 25 30 35 40 45 50 55 EXEMPLARY CONTROL/STATUS INFORMATION The control strip of the present invention provides a standard screen location for a collection of individual modules that provide status and control functions. In one embodiment, the control strip functions include a network switch that shows whether a network connection for the computer system, such as an AppleTalk™ network connection, is on or off and lets the user turn the network connection on or off without having to locate and execute other network connection software on the computer system (e.g., without having to open the Chooser™). 60 65 PROCESSING LOGIC FOR THE PRESENT INVENTION The present invention includes computer processing logic for generating the control strip of the present invention. This processing logic is described, in part, in the flow charts shown in FIGS. 4-10. In addition to the computer resources described earlier, the present invention relies upon the availability of an operating system and system functions capable of displaying windows, information in windows, characters, and cursor symbols on the display devices. System functions for interfacing with the cursor control devices and cursor function keys, including the tracking of cursor location within a window, are also required. These resources are standard processing components known in the art. When the processor of the present invention is first powered up, the operating system logic obtains control and initializes the system components such as read/write US 6,493,002 Bl 9 10 memory, the display device, the cursor control device, the cursor function keys, and keyboard. During this initialization process or in response to a user command, the operating system displays the control strip of the present invention. In one embodiment, the control strip initialization is performed in two stages. The first stage begins by initially loading at least one routine at start up. Upon loading necessary routines, the operating system allocates storage for global variables use. Next, resources are loaded for use by the control strip processing logic. These resources include the visual components or indicia that is to appear in the control strip, such as pictures, icons, text, etc. The processing logic for the control strip is patched into the operating system. Later, as a second stage of the initialization during the set up process, the control strip processing logic causes each of the module files to be opened one at a time. The code for the module is loaded. An initialization routine is run in response to a call, during which time, the module itself determines if it can run. This information is conveyed to the control strip. The processing logic then causes the window to be displayed and calls the modules to run themselves and appear in the control strip. FIG. 2F shows the control strip window graphics generated by processing logic being combined with graphics generated by a module to illustrate the creation of the resulting control strip. FIG. 4 is a flowchart of the processing logic responsible for generating the control strip of the present invention and processing events that occur involving the control strip. In one embodiment, the control strip main processing is called by the operating system. Referring to FIG. 4, the processing begins by saving the previous context and sets up the context of the control strip (processing block 401). The previous context refers to the state of the computer system prior to performing control strip processing. The previous context may correspond to an application program running immediately prior to the control strip processing being called. The context may include settings up its memory space, providing access to its global variables, etc. Next, a test determines if the secondary initialization has been done (processing block 402). If the secondary initialization has not been done, processing continues at processing block 403 where a secondary initialization process is run, and processing thereafter continues at processing block 409. The secondary initialization process causes the processing logic to initialize the control strip. One embodiment of the secondary initialization process is described in FIG. 5. On the other hand, if the window of the control strip is allocated, processing continues at processing block 404 where the processing logic awaits a user event and determines the type of such an event. Then a test determines if the user event type is a null event (processing block 405). That is, a test determines whether the user event type is idle or not. If the user event type is a null event, processing continues at processing block 406 where idle tasks are run, and processing thereafter continues at processing block 409. Thus, during idle periods, tasks involved with the control strip window may be run as well as tasks of the modules. Examples of module tasks may include updating help messages (e.g., due to a help feature being enabled on the computer system) and saving updated state information (e.g., display area on screen moved to new location, display area resized, module made invisible; module indicates state is changed and that it must be saved). On the other hand, if the event type is not a null event, processing continues at processing block 407. At processing block 407, a test determines if there has been a "click" of the mouse within the area defined by the control strip. If there has been a click of the mouse within the control strip, the mouse click is processed (processing block 408), and processing continues at processing block 409. The mouse click processing determines the location of the mouse click, which module in the controls strip was selected, or "clicked-on", if any, and any action to be taken based on that location. One embodiment of the mouse click processing is described in FIG. 9. If a mouse click has not occurred within the control strip, processing continues directly to processing block 409. At processing block 409, the previous context is restored and the processing logic exits to return control to the operating system. One embodiment of the secondary initialization process called by the control strip main processing logic is described in a flowchart in FIG. 5. Referring to FIG. 5, the secondary initialization process begins by testing whether the Finder™ has started up (processing block 501). If the Finder™ has not started up, the secondary initialization process ends. However, if the Finder™ has started up, the window of the control strip is created (processing block 502). Then a test determines whether the creation of the window of the control strip was successful (processing block 503). If the creation of the window of the control strip was not successful, the process ends. The creation of the window may not be successful because, for instance, there is not enough memory, missing system resources, etc. On the other hand, if the creation of the window of the control strip was successful, the font and color of the control strip are initialized (processing block 504). Then external modules are opened and initialized (processing block 505), the default screen location and size of the control strip are set (processing block 506), the user configuration is loaded (processing block 507), and the contents of the control strip are drawn (processing block 508). The user configuration may include screen location for the control strip, the saved display order of the modules, the window size of the control strip, etc. Then the secondary initialization process ends. The default screen location and size of the control strip are stored in memory and accessed. In one embodiment, these values may be changed by the computer user, such as by interacting with the control strip itself. In another embodiment, the default values are determined and permanently set by a system designer. Note that specification of the font, color, default screen location and size may not be required in lieu of the user configuration. Likewise, by using solely the default settings, the user configuration is not required. One embodiment of the process for opening and initializing external modules such as may be invoked by the secondary initialization process is shown in FIG. 6. Referring to FIG. 6, the processing logic begins by testing whether there are more module files to be opened (processing block 601). If there are no more module files (e.g., all the modules have been opened and loaded), then the process ends. The modules are opened and initialized one at a time. If there are more module files, the processing logic opens the module file (processing block 602) and loads the module code into memory (processing block 603). The processing logic calls the module to initialize itself (processing 604). The module is then also called by the processing logic to obtain the features of the module (processing block 605) and to obtain the width of the module's area, as well as features of the module (processing block 606). The features of the module 5 10 15 20 25 30 35 40 45 50 55 60 65 US 6,493,002 Bl 11 12 include help messages to be displayed when the module is "clicked on" with the cursor. Then the module file is closed (processing block 607) and the processing loops back to processing block 601. By looping back to processing block 601, the processing logic is able to provide the initialization procedures to all the modules, such that when all the modules have been processed the process ends. When the process ends, it returns in a manner well-known in the art to the processing logic that called (e.g., initiated) it. One embodiment of a process for drawing the contents of the control strip (processing block 508), such as used at processing block 508 of FIG. 5, is described in FIG. 7. Referring to FIG. 7, the processing logic initially determines if the control strip is visible (processing block 701). If the control strip is not visible, processing ends. That is, if the user has hidden the control strip, the present invention will not draw its contents. On the other hand, if the control strip is visible, processing continues at processing block 702 enters a looping structure where the processing logic tests whether there are more modules to draw. If there are no more modules to draw, processing ends and control returns to the process that called it. If there are more modules to draw, processing continues at processing block 703 where the processing logic tests whether the particular module needs to be redrawn. A module may need to be drawn when the information being displayed needs to be updated. For example, as the amount of energy in the battery is changing due to energy consumption from the computer system, an update to the battery indicia in the control strip must be made. If the module does not need to be redrawn, processing loops back to processing block 702 where the more modules test is repeated. On the other hand, if the module needs to be redrawn processing continues at processing block 704 where the processing logic determines whether the module is a button. If the module is a button, processing continues at processing block 705 where the background graphics of the button are drawn, and processing continues to processing block 707. If the module is not a button, the status-only background graphics are drawn (processing block 706) and processing continues at processing block 707. Note that in one embodiment, the type of background graphics may be obtained using a message sent to the module requesting its features. At processing block 707, the processing logic makes a call to the module to draw itself. That is, it is the responsibility of the module itself to draw its status for control indicia. Thereafter processing loops back to processing block 702. One embodiment of the processing for running idle tasks in FIG. 4 is described in a flowchart in FIG. 8. Referring to FIG. 8, the processing logic begins by determining whether a window update is pending (processing block 801). If a window update is pending, the processing continues at processing block 802 when the contents of the control strip are drawn. Window updates may be required due to a change in status in one of the modules. Changes may also be due to a reordering of the control strip entries. Note that one embodiment of the process to draw the control strip is shown in FIG. 7. Thereafter processing continues at processing block 803. If a window update is not pending processing continues directly to processing block 803. At processing 803, processing logic tests whether the configuration of the control strip has changed. If the configuration of the control strip has not changed, processing continues at processing block 806. If the configuration of the control strip has changed, processing continues at processing block 804 where a test determines whether it is safe to perform a save operation. This determination is based on whether the resources are available (i.e., H.D. is turned on) to perform the save operation. If it is not safe to perform a save operation, processing continues at processing block 806. However, if it is safe to save control strip, processing continues at processing block 805 where the configuration of the control strip is saved to disk. Thereafter processing continues to processing block 806. At processing block 806, the current idle module is called to run its idle task. In one embodiment, the processing logic of the present invention allows only one module to run its idle tasks during each a call to the processing of FIG. 8 (e.g., the currently designated module) to reduce overhead time. Identification of the current module is based on an ID associated with each of the modules. Then the idle task undergoes post processing (processing block 807), and the ID of the next module is updated to idle (processing block 808). That is, the module designated as the current module for the next call to the processing of FIG. 8 will be the next module in the list of modules. An example of the post processing is shown in FIG. 10. Then, the processing logic determines whether the module needs to save settings for use later (processing block 809). If the module does not need to save its settings, processing continues to processing block 812. On the other hand, if the settings of the module are to be saved, the processing logic tests whether the settings may be saved at this time (processing block 810). One reason the settings may not be saved is that the hard disk may be powered down or turned off. If the settings cannot be saved at this time, processing continues at processing block 812. If the settings of the module may be saved at this time, the processing logic causes the module settings to be saved to disk (processing block 811). Thereafter, processing continues at processing block 812. At processing block 812, the help messages for the control strip are updated, and processing ends and returns to the control of the main processing logic. One embodiment of the mouse click processing of the present invention, such as used in FIG. 4, is shown in a flowchart in FIG. 9. Referring to FIG. 9, the processing logic determines whether a mouse click has occurred inside the control strip (processing block 901). In one embodiment, this determination may be made by comparing the current location of the cursor with the location of the control strip (e.g., status bar). If a mouse click has not occurred inside the control strip, then processing loops back upon itself, retesting repeatedly until a mouse click does occur. When a mouse click occurs within the control strip, processing continues at processing block 902 where a determination is made as to upon which module the cursor was during the click. The processing logic then determines whether a move operation is being selected by the mouse (processing block 903). If a move operation has been chosen, the display of the module is moved or the entire control strip is moved (processing block 904) and the processing logic ends the mouse click process and exits to control of the processing logic that called this procedure. The determination of whether to move a module or the entire strip is based on the user's keystrokes or mouse movements. On the other hand, if a move operation is not to occur, processing continues at processing block 905. At processing block 905 the processing logic determines whether the module on which the click occurred is a "clickable" module, as opposed to a status only module, (processing block 905). That is, the processing logic tests 5 10 15 20 25 30 35 40 45 50 55 60 65 US 6,493,002 Bl 13 14 whether the module provides any additional functionality when a mouse moves the cursor to select an element in the control strip. If the module is not "clickable," processing ends. If the module is clickable, processing continues to process processing block 906 where the mouse click is tracked, i.e., the location of the cursor. Next, a test determines if the mouse is still within the bounds of the module (processing block 907). If the mouse is not within the bounds of the module, processing ends. However, if the mouse is within the boundaries of the module, the module is called to process the click (processing block 908) and the click undergoes post processing (processing block 909). Thereafter, the process ends. One embodiment of the process for post processing the mouse click is shown in FIG. 10. Referring to FIG. 10, the processing logic begins by determining whether the module desires to update its settings (processing block 1001). If the settings for the module are to be updated, processing continues at processing block 1002 where a flag is set to indicate that the module has a save pending, and processing continues to processing block 1003. The settings for a module may have to be updated due to user interaction, such as in the case of an option for a module being turned off or a module acquiring data as part of its functionality. If the settings of a module do not have to be updated, processing continues directly to processing block 1003. Setting may need to be updated when the module is displaying information that is changing frequently. At processing block 1003, a test determines whether the module needs to resize the display. If the display of the module must be resized, processing continues at processing block 1004 where the module is called to update its width. Then processing continues at processing block 1005. On the other hand, if the display of the module does not need to be resized, processing continues directly to processing block 1005. At processing block 1005, the processing logic determines whether the module desires to be closed. If the module desires to be closed, processing continues at processing block 1006 where the module is closed immediately. Then processing continues at processing block 1007. If the module does not desire to be closed, processing continues to processing block 1007. At processing block 1007, a test determines whether the control strip is to be resized or closed. If the control strip needs to be resized or closed, processing continues at processing block 1008 where the module displays are repositioned and redrawn, and then processing continues at processing block 1009. If the control strip is not to be resized or closed, processing continues directly to processing block 1009. At processing block 1009, a test determines whether the help state of the module is to be changed. The help state refers to help messages that the modules provide to users generally. If the help state of the module is to be changed, processing continues at processing block 1010 where the old help state of the module is invalidated and the process ends. If the module help state does not need to be changed, processing ends. Changes to the help state may occur due to a global change in the computer system, such as when a particular help feature (e.g., help balloons) is enabled. etc., are contained in a file on a disk. The control strip processing logic draws the strip which acts as the background for the individual modules. Each module is responsible for drawing the icons and other objects that make up its user interface. Contents of Module Files In one embodiment, the module file includes only a single resource containing the code necessary for the module to interact with the control strip. A module file may contain more than one code resource if it is to provide multifunctional support. In that case, each module in the file is loaded and initialized separately and treated as an independent entity. Module Interface The interface of the module to the control strip comprises a code resource. In one embodiment, using the Macintosh™ computer, the type of the code resource is 'sdev'. This code is responsible for performing all of the functions required by the control strip as well as any functions that are custom to the module itself. The module's entry point is at the beginning of the resource and is defined as 5 10 15 20 25 30 35 40 45 50 55 60 ADDING CONTROL STRIP MODULES In one embodiment, the control strip of the present invention operates as a shell with individual control and status modules added. Each module and its icons, pictures, 65 pascal long ControlStripModule (long message, long params, Rect *statusRect, GraftPtr statusport); Interactions between a module and the control strip are managed by passing messages to the module to tell it what to do or to obtain information about the module and its capabilities. In one embodiment, each module is required to observe Macintosh™ Pascal register saving conventions; that is, it may trash 680xO processor registers DO, D1, D2, AO, and AI, but must preserve all other registers across its call. Note that other operating systems and implementations of the present invention may have different restrictions. The message field comprises a message number from the list in the section "Control Strip Module Messages" that indicates to the module the action to perform. The params field signifies the result returned by the initialize call to the module. This would typically be a pointer to a pointer (e.g., the handle) to the private variables to be used by the module since modules cannot have global variables. This result is passed to the module on all subsequent calls. Note that in embodiments where modules can have global variables, such a field may be eliminated. The statusRect field comprises a pointer to a rectangle within the control strip defining the area that a module may draw within. The statusPort field specifies a pointer to the graphics port of the control strip. The graphics port may be either a color or black-and-white graphics port, and depends on the computer system on which the control strip is running. The result value returned by the module varies depending on the message sent to it. Results for each message are described below in the sections on the individual messages. CONTROL STRIP MODULE REFERENCE In one embodiment, control strip modules interact with the control strip processing logic in three ways: by accepting messages, by calling utility routines, and by calling the operating system manager (e.g., a call to Gestalt selectors). The next three sections describe each of those interactions. Control Strip Module Messages In one embodiment, all control strip modules respond to messages from the control strip processing logic, which is responsive to user interaction with the control strip displayed on the screen. The following messages have been defined: US 6,493,002 Bl 15 16 embodiment, this bit is set when, for example, a module has a pop-up menu associated with it. If this bit is cleared, the control strip tracks the cursor until the Message name Message No. Description mouse button is released, then sends an sdevMouse5 Click message, described below, to the module to sdevlnitModule o Initialize the module sdevCloseModule 1 Clean up before being closed notify it that there was a mouse-down event. sdevFeatures Return the feature bits 2 c) sdevHasCustomHelp (2)-If this bit is set, the module sdevGetDisplayWidth Return the current width of the 3 is responsible for displaying its own help messages. module's display 4 Periodic tickle when nothing else is sdevPeriodicTickle These help messages may be customized depending on happening 10 its current state. If the bit is cleared, the control strip Update the interface in the control sdevDrawStatus 5 displays a generic help message when the cursor passes strip over the its display area and Balloon Help, or other User has clicked on the module's sdevMouseClick display area help-based information provider, is on. sdevSavSettings Save any changed settings in the 7 d) sdevKeepModuleLocked (3)-If this bit is set, the code module's preferences file 15 of the module is kept locked and protected. In one Display a help balloon, if the sdevShowBalloonHelp 8 module has one embodiment, this bit is set only if the module is passing the address of one of its routines to a routine external to the module (e.g., installing itself in a queue). sdevInitModule sdevGetDisplayWidth The sdevInitModule message is the first message sent to 20 The sdevGetDisplayWidth message is sent to a module to a module after the module has been loaded from its file. determine how much horizontal space (in pixels) its display Initialization allows the module to initialize its variables and currently requires on the control strip. In response to the to determine whether it can run on a particular machine. For message, the module return the number of pixels as its result. example, if the function of the module is to display battery In one embodiment, the returned width does not comprise information, it may be only able to run on a portable 25 the maximum width required for any configuration, but computer, such as the Powerbook manufactured by Apple instead, reflects how much space it currently requires. Note Computer. that this useful because, in one embodiment, its possible for In response to receiving the sdevInitModule message, the a module to request that its display be resized. module loads and detaches any resources (e.g., text, code, sdevPeriodicTickle icons, etc.) in its resource file that will be used. Also, space 30 The sdevPeriodicTickle message is passed to the module is allocated in the global variables for handles to those periodically to allow the module to update its display due to detached resources. changes in its state. In one embodiment, this message occurs The sdevInitModule message returns a result depending at regular intervals, while in other embodiments, there is no on its success at installing itself. In one embodiment, a minimum or maximum interval between "tickles." In positive result (~O) indicates successful installation. The 35 response to the sdevPeriodicTickle message, the module processing logic passes this result value to the module on all returns, as its result, some bits that signal requests for actions subsequent calls. A negative result indicates an error from the control strip processing logic. In one embodiment, condition, and installation of the module is aborted by the there are 32 bits returned. All undefined bits in the result are control strip processing logic. Also if a negative result reserved for future use and, in one embodiment, are set to O. occurs and installation has been aborted, the module does 40 The bits are defined as: not receive a close message. a) sdevResizeDisplay (O)-If this bit is set, the module sdevCloseModule resizes its display. The control strip processing logic The sDevCloseModule message is sent to a module when sends a sdevGetDisplayWidth message to the module it should be closed. In one embodiment, the module itself and then updates the control strip on the display. decides when to be closed. A module may be closed when 45 b) sdevNeedToSave (I)-If this bit is set, the module it no longer is required to be running, such as when a battery needs to save changed settings to disk. The control strip level indicator no longer needs to be running when the processing logic marks the request but may defer the computer system is receiving its power from an outlet. When actual save operation to a better time (e.g., when the the module receives this message, it disposes of all the hard disk is spinning). detached resources it loaded as well as its global storage. No 50 result is expected. c) sdevHelpStateChange (2)-If this bit is set, the help sdevFeatures message of the module needs to be updated due to a The sdevFeatures message queries the module for the change in state. If a help balloon is being displayed for features it supports. This message returns as its result a the module, the control strip processing logic removes bitmap consisting of I bits for supported features and 0 bits 55 the previous help balloon with a new help balloon for for unsupported features. In one embodiment, there are 32 the current state. bits returned. All undefined bits are reserved for future d) sdevCloseNow (3)-If this bit is set, the module is features, and, in one embodiment, are set to O. The bits are requesting to be closed. The control strip processing defined as: logic calls the module to save its settings, then calls the a) sdevWantMouseClicks (O)-If this bit is set, the control 60 module again to close itself by, for example, disposing strip notifies the module of mouse down events. If this of any loaded resources, disposing of private storage, bit is not set, the control strip assumes that the module etc. only displays status information with no user interacsdevDrawStatus tion. The sdevDrawStatus message indicates that the module b) sdevDontAutoTrack (I)-If this bit is set, the control 65 has to redraw its display to reflect the most recent state. In strip highlights the display of the module and then calls one embodiment, this message is sent when the user clicks the module to perform mouse tracking. In one on the display area of the module, when any of the display US 6,493,002 Bl 17 18 of the module is resized, or when the control strip itself pascal Boolean SBlsControlStripVisible ( ); The SBlsControlStripVisible routine returns a Boolean needs to be updated, perhaps in response to a screen saver value indicating whether or not the control strip is currently deactivation. visible. It returns a value of "true" if the control strip is The statusRect parameter points to a rectangle bounding the display area of the module, in local coordinates. All 5 visible, or a value of "false" if it's hidden. In one embodiment, the SBIsControlStripVisible call drawing done by a module within the bounds of the control returns a value of "true" even when the control strip is not strip is limited to the module's display rectangle. In other visible. That happens whenever the control strip is not embodiment, drawing may extend outside the display rectaccessible in the current environment. As soon as that ange of the module. The clipping region of the control strip's condition changes, the control strip becomes visible again window is set to the visible portion of the display rectangle 10 and the returned value correctly reflects the actual state. of the module so that all the elements in the display may be SBShowHideControlStrip drawn. If the clipping region is to be changed, the initial The SBShowHideControlStrip routine shows or hides the clipping region should be observed to avoid drawing over control strip. An exemplary call follows: other items in the control strip. pascal void SBShowHideControlStrip (Boolean showIt); sdevMouseClick 15 The SBShowHideControlStrip routine determines the visWhen the user clicks in a display area of the module, the ibility state for the control strip based on the value of the control strip processing logic calls the module with the "showIt" parameter. Passing a value of "true" makes the sdevMouseClick message if the sdevWantMouseClicks bit control strip visible, and passing a value of "false" hides it. is set in the features of the module. If the sdevDontAutoTrack bit is also set, the control strip 20 Modules may not need to call this routine. However, the SBShowHideControlStrip routine provides a means for processing logic draws the display of the module in its other software to hide the control strip when it is in the way. highlighted state and then sends the sdevMouseClick mesCalling the SBShowHideControlStrip routine with a sage to the module. If the sdevDontAutoTrack bit is not set, "showIt" value of "true" mayor may not show the control the control strip processing logic tracks the cursor until the mouse button is released. If the cursor is still within the 25 strip, depending on the current environment. If the control strip is not accessible, it does not become visible. If a display area of the module, the control strip processing logic "showIt" value of "true" is passed to this routine, then the sends the sdevMouseClick message to notify the module control strip becomes visible when the environment that a click occurred. In either case, the module can then changes. perform the appropriate function in response to a mouseSBSafeToAccessStartupDisk down event. 30 The SBSafeToAccessStartupDisk routine determines This message returns the same result as the sdevPeriodwhether the internal hard disk is turned on so that processing icTickle message. logic of the present invention can determine whether to sdevSaveSettings make a disk access or postpone it until a time when the disk The sdevSaveSettings message is passed to the module when the control strip processing logic has determined that 35 is already spinning. An exemplary call follows: pascal Boolean SBSafeToAccesStartupDisk ( ); the configuration information may be saved to the disk (e.g., The SBSafeToAccessStartDisk routine returns a Boolean HD turned on, etc.). In one embodiment, the sdevSaveSetvalue of "true" if the disk is turned on and "false" if it is not. tings message is sent only if the module had previously set SBOpenModuleResourceFile the sdevNeedToSave bit in the result of a sdevPeriodicTickle The SBOpenModuleResourceFile routine opens a module or sdevMouseClick message. The call returns an error code 40 resource file. An examplary call follows: (File Manager, Resource Manager, or the like) indicating the pascal short SBOpenModuleResourcFile (OSType success of the save operation. The control strip processing file Creator); logic continues to send this message to the module until the The SBOpenModuleResourceFile routine opens the module returns a result of 0, indicating a successful save. 45 resource fork of the module file whose creator is sdevShowBalloonHelp "fileCreator", and return the file's reference number as its The control strip processing logic calls the module with result. If the file cannot be found or opened, the SBOpenthe sdevShowBalloonHelp message if Balloon Help is MduleResourceFile routine returns a result of -l. turned on, the module has previously set the sdevHasCusThe SBOpenModuleResourceFile routine also provides a tomHelp bit in its features, and the cursor is over the module's display area. In such a case, the module calls the 50 means for a module to load in large or infrequently used resources that it doesn't usually need, but that it requires for Help Manager to display a help balloon describing the a particular operation. current state of the module. The module returns a value of SBLoadPreferences o if successful or an appropriate error result if not. The SBLoadPreferences routine loads a resource from a UTILITY ROUTINES 55 preferences file. An examplary call follows: In one embodiment, the control strip processing logic pascal OSErr SBLoadPreferences (ConstStr255Param provides a set of utility routines that are available to control prefsResourceNarne, Handle *preferences); strip modules. They are provided to promote a consistent The SBLoadPreferences routine loads a resource containuser interface within the control strip and to reduce the ing a module's configuration information from the preferamount of duplicated code that each module would have to 60 ences file of the control strip. The PrefsResourceName include to support common functions. Therefore, in an parameter points to a Pascal string containing the name of embodiment that does not include these utility routines, a the resource. The "Preferences" parameter points to a variportion or all of the modules may include duplicated code able that holds a handle to the resource read from the file. supporting common functions. The handle does not need to be preallocated. SBlsControlStripVisible 65 If either prefsResourceName or preferences contains a nil pointer, the SBLoadPreferences routine does nothing and The SBlsControlStripVisible routine determines whether returns a result of paramErr. If the resource is successfully the control strip is visible. An exemplary call follows: US 6,493,002 Bl 19 20 loaded, the SBLoadPreferences routine returns a result of O. The SBLoadPreferences routine also returns other Memory Manager and Resource Manager errors if it fails during some art of the process. SBSavePreferences The SBSavePreferences routine saves a resource to a preferences file. An exemplary call follows: pascal OSErr SBSavePreferences (ConstStr255Param prefsResourceNarne, Handle preferences); The SBSavePreferences routine saves a resource containing a module's configuration information to the preferences file of the control strip. The PrefsResourceName parameter points to a Pascal string containing the name of the resource. The "preferences" parameter contains a handle to a block of data which will be written to the file. If either prefsResourceName or preferences has a nil value, the SBSavePreferences routine does nothing and returns a result of paramErr. if the resource is successfully saved, the SBSavePreferences routine returns a result of O. The SBSavePreferences routine can also return other Memory Manager and Resource Manager errors if it fails during some part of the process. SBGetDetachedString The SBGetDetachedIndString routine obtains a string from a detached resource. An exemplary call follows: pascal void SBGetDetachedIndString (StringPtr the String, Handle stringList, short whichString); The SBGetDetachedIndString routine is the detached resource version of GetIndString. The parameter thestring points to a Pascal string; the stringList is a handle to a detached 'STR#' resource; and whichString is the index (l-n) into the array of Pascal strings contained in the detached resource. The SBGetDetachedIndString routine copies the string whose index is whichString into the space pointed to by theString. If whichString is out of range, the SBGetDetachedIndString routine returns a zero-length string. SBGetDetachIconSuite The SBGetDetachIconSuite routine sets up a detached icon suite. An exemplary call follows: pascal OSErr SBGetDetachIconSuite (Handle *theIconSuite, short theResID, unsigned long selector); The SBGetDetachIconSuite routine creates a new icon suite, loads all of the requested icons, and then detaches the icons. The parameter theIconSuite points to the location where the handle to the icon suite is stored; the parameter theResID is the resource ID of the icons that make up the icon suite; and the parameter "selector" indicates which icons are to be loaded into the suite. In one embodiment, the "selector" parameter contains one (or a combination of) the following values: module is open. This is typically the case during a module's initialization call. SBTrackpopupMenu The SBTrackpopupMenu routine manages a pop-up menu. An exemplary call follows: pascal short SBTrackpopupMenu (const Rect *moduleRect, MenuHandle theMenu); The SBTrackpopupMenu routine handles setting up and displaying a pop-up menu associated with a module. The module passes a pointer to its display rectangle and a handle to the menu to use. In one embodiment the menu is displayed immediately above and adjacent to the display rectangle of the module, yet this is not required. By doing so, the user is allowed to view the current configuration or to change the settings. The SBTrackpopupMenu routine returns an indication as to which menu item was selected, or 0 if no item was selected (e.g., because the user moved the cursor outside the menu's bounds). SBTrackSlider The SBTrackSlider routine displays and sets an arbitrary parameter. An exemplary call follows: pascal short SBTrackSlider (const Rect *moduleRect, short ticksOnSlider, short initiaIValue); The SBTrackSlider routine displays an unlabeled slider above the module's display rectangle. The slider may be used for displaying and setting the state of an arbitrary parameter. The parameter "ModuleRect" contains a pointer to the module's display rectangle; "ticksOnSlider' is the upper bounds of the value returned by the slider; and "initiaIValue" is the starting position (0 to ticksOnSlider -1). When the user releases the mouse button, the SBTrackSlider routine returns the final position. SBShowHelpString The SBShowHelpString routine displays a help balloon. An exemplary call follows: pascal OSErr SBShowHelpString (const Rect *moduleRect, StringPtr helpstring); The SBShowHelpString routine displays a module's help balloon. The module passes a pointer to its display rectangle and a pointer to a Pascal string, and the routine displays the balloon if possible. If the help dstring has a length of 0 or the Help Manager is unable to display a balloon, an error result is returned. If the SBShowHelpString routine successfully displays the help balloon, it returns a result of O. SBGetBarGraphWidth The SBGetBarGraphWidth routine determines how wide a bar graph drawn by the SBDrawBarGraph routine (described below) will be so that a module can calculate its display width. An exemplary call follows: pascal short SBGetBarGraphWidth (short barCount); The SBGetBarGraphWidth routine returns the width of a bar graph containing barCount segments. If barCount has a value less than 0, the SBGetBarGraphWidth routine returns a width of O. SBDrawBarGraph The SBDrawBarGraph routine draw as bar graph. An exemplary call follows below: pascal void SBDrawBarGraph (short level, short barCount, short direction, Point barGraphTopLeft); The SBDrawBarGraph routine draws a bar graph containing the number of segments specified by the barCount parameter in a module's display area. If the value of barCount is less than or equal to 0, the SBDrawBarGraph routine does nothing. The bar graph is drawn relative to the location specified by barGraphTopLeft. FIG. 11 illustrates the manner in which the point barGraphTopLeft determines the position of the bar graph. svAllLargeData OxOOOOOOFF svAllSmallData xOOOOFFOO svAllMiniData OxOOFFOOOO load large 32-by-32-pixel icons ('ICN#', 'io14', 'io18') load small 16-by-16-pixel icons ('ics#', 'ics4', 'ics8') load mini 12-by-12-pixel icons ('icm#', icm4', 'icm8') 5 10 15 20 25 30 35 40 45 50 55 60 These values may be ORed together to load combinations of icon sizes. The SBGetDetachIconSuite routine returns an appropriate error code if it's unsuccessful, or 0 if it was able to load the icon suite. Note that if none of the icons comprising the icon suite could be found, the call returns the error "resNotFound. In one embodiment, the SBGetDetachIconSuite routine is called only when the resource file of the 65 US 6,493,002 Bl 21 22 The "level" parameter determines how many segments description, it is to be understood that the particular embodiment shown and described by way of illustration is in no are highlighted. The value of "level" should be in the range way intended to be considered limiting. Therefore, referof 0 to barCount -1. If the value of "level" is less than 0, no ences to details of the preferred embodiment are not segments in the bar graph are highlighted; if "level" is greater than or equal to barCount, all segments in the bar 5 intended to limit the scope of the claims which in themselves recite only those features regarded as essential to the invengraph are highlighted. tion. The direction parameter specifies which way the bar Thus, a method and apparatus for generating a window graph will be drawn to show a larger level. In one displaying control and status indicia has been described. embodiment, the direction parameter specifies one of the I claim: 10 following values: 1. An interactive computer-controlled display system #define BarGraphSlopeLeft -1 //max end of sloping comprising: graph is on the left #define BarGraphFlatRight 0 //max a processor; end of fiat graph is on the right #define BarGraphSloa data display screen coupled to the processor; peRight 1 //max end of sloping graph is on the right a cursor control device coupled to said processor for FIG. 12 illustrates the resulting bar graph for each direc- 15 positioning a cursor on said data display screen; tion value. The arrows indicate which wayan increasing a window generation and control logic coupled to the level value is displayed. In one embodiment, for sloped processor and data display screen to create an operating versions of the bar graph, the number of segments specified environment for a plurality of individual programming by the barCount value may not be larger than 8. If a larger modules associated with different application programs barCount value is passed, the SBDrawBarGraph routine 20 that provide status and/or control functions, wherein draws nothing. the window generation and control logic generates and SBModalDialoglnContext displays a first window region having a plurality of The SBModalDialoglnContext routine may be used in display areas on said data display screen, wherein the place of the ModalDialog routine to prevent background first window region is independently displayed and applications from being run while the modal dialog window 25 independently active of any application program, and wherein each of the plurality of display areas is assois visible. An exemplary call is as follows: ciated with one of the plurality of individual programpascal void SBModalDialoglnContext ming modules, the first window region and the plurality (ModalFilterProcPtr filterProc, short *itemHit); of independent display areas implemented in a window The SBModalDialoglnContext routine is a special version layer that appears on top of application programming of ModalDialog that doesn't allow background applications 30 windows that may be generated; and to be run while a modal dialog window is visible. The an indicia generation logic coupled to the data display SBModalDialoglnContext routine is used when the screen to execute at least one of the plurality of occurence of context switching is not desired. individual programming modules to generate informaGESTALT SELECTOR 35 tion for display in one of the plurality of display areas in the first window region, wherein at least one of the The control strip processing logic installs two "Gestalt" plurality of display areas and its associated programselectors to return information to locations external to the ming module is sensitive to user input, and further computer system. One selector returns software attributes, wherein the window generation and control logic and and the other returns the current version of the processing 40 the indicia generation logic use message-based comlogic (e.g., software). munication to exchange information to coordinate gestaltControlStripAttr activities of the indicia generation logic to enable The selector "gestaltControlStripAttr (,sdev') return 32 interactive display activity. bits describing the attributes of the current version of the 2. The display system defined in claim 1 wherein the first control strip processing logic. In one embodiment, only the 45 window region comprises a control strip. following bit is defined: 3. The display system defined in claim 1 wherein said at gestaltControlStripExists 0 l=control strip is installed least one display area is variably sized. gestaltControlStripVersion 4. The display system defined in claim 1 wherein size of The selector gestaltControlStripVersion ('csvr') returns the first window region is variable. the version of control strip processing logic that is installed. 50 5. The display system defined in claim 4 wherein the first The format of the returned version is the same as that of the window region is sized such that none of the plurality of numeric part of a Macintosh™ computer system resource, display areas is visible. that is: 6. The display system defined in claim 4 wherein the first 55 Bits Bits Bits Bits 31-24 23-20 19-16 15-8 Major part of the version, in BCD Minor part of the version, in BCD Bug release version, in BCD Release stage: $80~final $60~beta 60 $40~alpha $20~development Bits 7-0 Revision level of nonreleased version, in binary Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing 65 window region is sized such that all of the plurality of display areas are visible. 7. The display system defined in claim 4 wherein the first window region is sized such that a portion of the plurality of display areas is visible. 8. The display system defined in claim 1 wherein at least one of the plurality of the display areas only displays information. 9. The display system defined in claim 1 wherein at least one of the display areas acts to provide access to control information when selected. 10. The display system defined in claim 9 wherein said at least one of the plurality of display areas displays an additional display element. US 6,493,002 Bl 23 11. The display system defined in claim 1 wherein each of the plurality of display areas is individually and variably sized. 12. The display system defined in claim 1 wherein the first window region always appears in front of application windows. 13. The display system defined in claim 1 wherein the first window region is implemented in a private window layer that appears in front of windows for all applications layers. 14. An interactive computer-controlled display system comprising: a processor; a data display screen coupled to the processor; a cursor control device coupled to said processor for positioning a cursor on said data display screen; window generation and control logic coupled to the processor and data display screen to create an operating environment for a plurality of individual programming modules associated with different application programs that provide status and/or control functions, wherein the window generation and control logic generates and displays a first window-region having a plurality of display areas on said data display screen, wherein the first window region is independently displayed and independently active of any application program, and wherein each of the plurality of display areas is associated with one of the plurality of individual programming modules, the first window region and the plurality of independent display areas implemented in a window layer that appears on top of application programming windows that may be generated; and at least one indicia graphics generation logic coupled to the processor and the window generation and control logic, wherein said at least one indicia graphics generation logic generates user sensitive graphics for display in at least one data display area by executing at least one of the plurality of individual programming modules; wherein the window generation and control logic determines when said at least one data display area has been selected by the user and signals said at least one indicia graphics generation logic in response to user selection, and further wherein said at least one indicia graphics generation logic initiates a response from said at least one of the plurality of programming modules. 15. The display system defined in claim 14 wherein the first window region is always visible to the user. 16. The display system defined in claim 14 wherein the first window region comprises a control strip. 17. The display system defined in claim 14 wherein said at least one display area is variably sized. 18. The display system defined in claim 14 wherein each of the plurality of display areas is individually and variably sized. 19. The display system defined in claim 14 wherein the first window region always appears in front of application windows. 20. The display system defined in claim 14 wherein the first window region is implemented in a private window layer that appears in front of windows for all applications layers. 21. A method for generating control information compris- 24 ferent application programs that provide status and/or control functions; generating a first window sized to accommodate a plurality of display areas for indicia resulting from execut5 ing at least one of the plurality of individual programming modules, wherein each of the plurality of display areas is associated with one of the plurality of individual programming modules, and wherein the first window is independently displayed and independently 10 active of any application program, the first window region and the plurality of independent display areas implemented in a window layer that appears on top of application programming windows that may be generated; 15 displaying the indicia in each of said plurality of display areas by executing one of a plurality of individual programming modules corresponding to each indicia; selecting one of the indicia, wherein the selecting comprises a first programming module determining which 20 of said plurality of display areas is selected and sending a message to a programming module of said plurality of individual programming modules responsible for generating a display of a selected indicia; said programming module performing a function in 25 response to a selection. 22. The method defined in claim 21 wherein one of said plurality of indicia comprises status information. 23. The method defined in claim 21 wherein one of said 30 plurality of indicia comprises control information. 24. The method defined in claim 21 further comprising: the first programming module requesting a set of features supported by said programming module, wherein said requesting comprises sending a first message to said programming module; and 35 said programming module returning a second message indicative of features supported by said programming module, such that said first programming module interacts with said programming module in response to user interaction with the first programming module based on 40 indicated features as set forth by said programming module. 25. A system comprising: a window generation and control logic to create an 45 operating environment for a plurality of individual programming modules associated with different application programs that provide status and/or control functions, wherein the window generation and control logic generates and displays a first window region 50 having a plurality of display areas, wherein the first window region is independently displayed and independently active of any application program, and wherein each of the plurality of display areas is associated with one of the plurality of individual program55 ming modules, the first window region and the plurality of independent display areas implemented in a window layer that appears on top of application programming windows that may be generated; an indicia generation logic coupled to the data display 60 screen to execute at least one of the plurality of individual programming modules to generate information for display in one of the plurality of display areas in the first window region, wherein at least one of the plurality of display areas and its associated program~: ~ ming module is sensitive to user input, and further wherein the window generation and control logic and creating an operating environment for a plurality of the indicia generation logic use message-based comindividual programming modules associated with dif- US 6,493,002 Bl 25 26 munication to exchange information to coordinate activities of the indicia generation logic to enable interactive display activity. 26. An interactive computer-controlled display system comprising: a means for positioning a cursor on a data display screen; a means for creating an operating environment for a plurality of individual programming modules associated with different application programs that provide status and/or control functions, wherein a first window region is displayed having a plurality of display areas on said data display screen, wherein the first window region is independently displayed and independently active of any application program, and wherein each of the plurality of display areas is associated with one of the plurality of individual programming modules, the first window region and the plurality of independent display areas implemented in a window layer that appears on top of application programming windows that may be generated; and a means for executing at least one of the plurality of individual programming modules to generate information for display in one of the plurality of display areas in the first window region, wherein at least one of the plurality of display areas and its associated programming module is-sensitive to user input, wherein an interactive display activity is enabled. 27. The display system defined in claim 26 wherein the first window region comprises a control strip. 28. The display system defined in claim 26 wherein said at least one of the plurality of display areas is variably sized. 29. The display system defined in claim 26 wherein size of the first window region is variable. 30. The display system defined in claim 29 wherein the first window region is sized such that none of the plurality of display areas is visible. 31. The display system defined in claim 29 wherein the first window regions is sized such that all of the plurality of display areas are visible. 32. The display system defined in claim 29 wherein the first window regions is sized such that a portion of the plurality of display areas is visible. 33. The display system defined in claim 26 wherein said at least one of the plurality of display areas only displays information. 34. The display system defined in claim 26 wherein said at least one of the plurality of display areas acts to provide access to control information when selected. 35. The display system defined in claim 34 wherein said at least one of the data areas display an additional display element. 36. The display system defined in claim 26 wherein each of the plurality of display areas is individually and variably sized. 37. The display system defined in claim 26 wherein the first window region always appears in front of application windows. 38. The display system defined in claim 26 wherein the first window region is implemented in a private window layer that appears in front of windows for all application layers. 39. An interactive computer-controlled display system comprising: a means for positioning a cursor on said data display screen; a means for creating an operating environment for a plurality of individual programming modules associ- ated with different application programs that provide status and/or control functions, wherein a first window region is displayed having a plurality of display areas on said data display screen, wherein the first window region is independently displayed and independently active of any application program, and wherein each of the plurality of display areas is associated with one of the plurality of individual programming modules, the first window region and the plurality of independent display areas implemented in a window layer that appears on top of application programming windows that may be generated; a means for generating user sensitive graphics for display in at least one data display area; a means for determining when said at least one data display area has been selected by the user; and a means for initiating a response from said at least one of the plurality of programming modules. 40. The display system defined in claim 39 wherein the first window region is always visible to the user. 41. The display system defined in claim 39 wherein the first window region comprises a control strip. 42. The display system defined in claim 39 wherein said at least one data display area is variably sized. 43. The display system defined in claim 39 wherein each of the plurality of display areas is individually and variably sized. 44. The display system defined in claim 39 wherein the first window region always appears in front of application windows. 45. The display system defined in claim 39 wherein the first window region is implemented in a private window layer that appears in front of windows for all applications layers. 46. A computer readable medium containing executable computer program instructions, which when executed by a data processing system, cause the data processing system to perform a method for generating control information comprising: creating an operating environment for a plurality of individual programming modules associated with different application programs that provide status and/or control functions; generating a first window sized to accommodate a plurality of display areas for indicia resulting from executing at least one of the plurality of individual programming modules, wherein each of the plurality of display areas is associated with one of the plurality of individual programming modules, and wherein the first window is independently displayed and independently active of any application program, the first window region and the plurality of independent display areas implemented in a window layer that appears on top of application programming windows that may be generated; displaying the indicia in each of the plurality of display areas by executing one of a plurality of individual programming modules corresponding to each indicia; and selecting one of the indicia, wherein the selecting comprises a first programming module determining which of the plurality of display areas is selected and sending a message to a programming module of the plurality of individual programming modules responsible for generating a display of a selected indicia, and the programming module performing a function in response to a selection. 5 10 15 20 25 30 35 40 45 50 55 60 65 US 6,493,002 Bl 27 47. The computer readable medium as set forth in claim 46 wherein ones of the indicia comprises status information. 48. The computer readable medium as set forth in claim 46 wherein one of the indicia comprises control information. 49. The computer readable medium as set forth in claim 5 46 further comprising: the first programming module requesting a set of features supported by said programming module, wherein requesting comprises sending a first message to said programming module; and 10 said programming module returning a second message indicative of features supported by said programming module, such that said first programming module interacts with said programming module in response to user interaction with the first programming module based on 15 indicated features as set forth by said programming module. 50. A system comprising: a means for window generation and control to create an 20 operating environment for a plurality of individual programming modules associated with different application programs that provide status and/or control functions, wherein the means for window generation and control generates and displays a first window 28 region having a plurality of display areas, wherein the first window region is independently displayed and independently active of any application program, and wherein each of the plurality of display areas is associated with one of the plurality of individual programming modules, the first window region and the plurality of independent display areas implemented in a window layer that appears on top of application programming windows that may be generated; a means for indicia generation coupled to the data display screen to execute at least one of the plurality of individual programming modules to generate information for display in one of the plurality of display areas in the first window region, wherein at least one of the plurality of display areas and its associated programming module is sensitive to user input, and further wherein the means for window generation and control and the means for indicia generation use messagebased communication to exchange information to coordinate activities of the means for indicia generation to enable interactive display activity. * * * * *

Disclaimer: Justia Dockets & Filings provides public litigation records from the federal appellate and district courts. These filings and docket sheets should not be considered findings of fact or liability, nor do they necessarily reflect the view of Justia.


Why Is My Information Online?