Nanoco Technologies Ltd. v. Samsung Electronics Co., Ltd. et al

Filing 1

COMPLAINT against Samsung Advanced Institute of Technology, Samsung Display Co., Ltd., Samsung Electronics America, Inc., Samsung Electronics Co., Ltd., Samsung Electronics Co., Ltd. Visual Display Division ( Filing fee $ 400 receipt number 0540-7664317.), filed by Nanoco Technologies Ltd.. (Attachments: # 1 Civil Cover Sheet, # 2 Exhibit 1, # 3 Exhibit 2, # 4 Exhibit 3, # 5 Exhibit 4, # 6 Exhibit 5, # 7 Exhibit 6, # 8 Exhibit 7, # 9 Exhibit 8, # 10 Exhibit 9, # 11 Exhibit 10, # 12 Exhibit 11, # 13 Exhibit 12, # 14 Exhibit 13, # 15 Exhibit 14)(Henry, Claire)

Download PDF
Exhibit 14 Supporting Information Bright and Uniform Green Light Emitting InP/ZnSe/ZnS Quantum Dots for Wide Color Gamut Displays Yongwook Kim†∥, Sujin Ham‡∥ Hyosook Jang†, Ji Hyun Min†, Heejae Chung†, Junho Lee†, Dongho Kim‡* and Eunjoo Jang†* † Inorganic Material Lab, Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea. ‡ Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. ∥These authors contributed equally to this work. *E mail: ejjang12@samsung.com; dongho@yonsei.ac.kr S-1 Table of Contents 1. Supporting Figures and Table 2. References S-2 1. Supporting Figures and Table a In(LA)3 150°C In-P-Zn ligand complex Zn(OA)2 (TMS)3P 170°C InP-Zn magic-sized cluster (labs = 370 nm) 240°C InP Growth and Focusing b Intensity 150°C 170°C 240°C 300 400 500 Wavelength (nm) 180 c 600 700 d =2.0 nm σ = 12% 160 140 Counts 120 100 80 60 40 20 20 nm 0 0 1 2 3 4 5 6 7 Diameter (nm) 8 9 10 11 d (TMS)3P injection at 150°C Intensity 280°C 300 400 500 Wavelength (nm) 600 700 Figure S1. (a) Scheme of the InP core growth. (b) Absorption spectrum evolution during the InP growth. (c) A STEM image (left) and the size distribution (right) of InP cores. The black line in the size distribution is the Gaussian fit. (d) Comparison of absorption spectra of InP QDs prepared by injecting (TMS)3P at 150°C and 280°C. S-3 Table S1. Elemental compositions of QDs and calculated thickness of each shell as well as the diameter of QDs. Sample Mole ratio (X/In) Thickness (nm) Diameter ZnSe ZnS ZnSe/ZnS (nm) 1.00 - - - 2.0 15.3 1.00 1.5 - 1.5 5.0 34.9 15.3 1.00 1.5 0.5 2.0 6.0 10.3 0.00 1.00 - 1.0 1.0 4.0 P/In S/In Zn/In Se/In In/In InP 0.73 0.00 0.37 0.00 InP/ZnSe 0.57 0.00 16.7 InP/ZnSe/ZnS 0.67 14.7 InP/ZnS 0.67 8.45 S-4 60 a InP/ZnSe d = 5.3 nm σ = 15% Counts 40 20 0 0 1 2 3 4 5 6 7 20 b 8 9 10 11 d = 7.3 nm σ = 16% InP/ZnSe/ZnS Counts 15 10 5 0 0 1 2 3 4 5 6 7 8 9 10 11 120 c d = 4.2 nm σ = 12% InP/ZnS 100 Counts 80 60 40 20 20 nm 0 0 1 2 3 4 5 6 7 Diameter (nm) 8 9 10 11 Figure S2. STEM images (left) and their corresponding size distributions (right) of InP/ZnSe (a), InP/ZnSe/ZnS (b), and InP/ZnS QDs (c). Black lines indicate Gaussian fitting of the size distribution. S-5 HAADF In P Se S 10 nm Zn Figure S3. STEM EDS mapping images of InP/ZnSe/ZnS QDs. S-6 a Intensity InP/ZnS 300 400 500 600 700 Wavelength (nm) b c 2 nm 20 1/nm d Intensity InP/ZnS 10 20 30 40 50 2 Theta (deg) 60 70 Figure S4. (a) Absorption (dotted lines) and emission (solid lines) spectra of InP/ZnS QDs. A HR-STEM image (b) and its FFT diffractogram (c) of InP/ZnS QD. (d) Powder XRD patterns of InP/ZnS QDs. The vertical bars represent the diffraction patterns for bulk zinc-blende ZnS. S-7 PL Intensity InP/ZnS InP/ZnSe InP/ZnSe/ZnS 400 450 500 550 Wavelength (nm) 600 650 Figure S5. Steady-state emission spectra for InP/ZnS, InP/ZnSe, and InP/ZnSe/ZnS. Fitting each emission spectrum to a Gaussian function (short gray dashes) at the front line creates a tail on the right side of the spectrum. The percentage of the tail is 14% of InP/ZnS, 29% of InP/ZnSe, and 11% of InP/ZnSe/ZnS. S-8 0 100 10 InP/ZnS 610 10 -1 10-1 450 PL Intensity (counts / 20 ms) 10 -2 10-2 0 0 100 100 200 200 300 300 400 400 1000 10 500 500 InP/ZnSe 635 -1 10-1 10 470 -2 10-2 0 0 100 100 200 200 300 300 0 100 10 400 400 500 500 InP/ZnSe/ZnS 10-1 10-1 610 470 10-2 10-2 0 100 100 200 200 300 300 Time (ns) 400 400 500 500 Figure S6. Time-resolved PL decay curves probed at different wavelengths with a 10 nm spectral width for InP/ZnS (top), InP/ZnSe (middle), and InP/ZnSe/ZnS (bottom). S-9 InP/ZnS PL Intensity (norm.) InP/ZnSe Temp. (K) 77 97 117 137 157 177 197 217 237 257 277 297 InP/ZnSe/ZnS 450 500 550 600 650 700 Wavelength (nm) 750 Figure S7. Normalized temperature-dependent PL spectra of the InP/ZnS (top), InP/ZnSe (middle), and InP/ZnSe/ZnS (bottom) QDs S-10 Se 2P3/2 InP/ZnS InP/ZnSe InP/ZnSe/ZnS Se–O Se 3d S 2P b Intensity Se 2P1/2 a 172 168 164 160 Binding Energy (eV) 156 68 64 60 56 Binding Energy (eV) 52 Figure S8. S (2P) and Se (2P1/2) peaks (a) and Se (3d) peak (b) of high-resolution XPS spectra of InP/ZnSe (dark cyan), InP/ZnSe/ZnS (green) and InP/ZnS QDs (navy). S-11 a 2.55 InP/ZnS InP/ZnSe InP/ZnSe/ZnS Energy (eV) 2.50 2.45 2.40 2.35 2.30 50 100 b 260 150 200 Temperature (K) 250 300 250 300 InP/ZnS InP/ZnSe InP/ZnSe/ZnS 240 FWHM (meV) 220 200 180 160 140 120 50 100 150 200 Temperature (K) Figure S9. Temperature-dependent PL peak energy (a) and FWHM (b) of the InP/ZnSe, InP/ZnSe/ZnS, and InP/ZnS QDs. S-12 1S Energy Surface Core GS Configuration coordinate (a.u.) Figure S10. Schematics of core and surface emission for the QDs. In this approach, described by Marcus-Jortner electron transfer theory1, the possibility of tunneling through the potential barrier is explicitly allowed via a minimal model consisting of two modes: a classical low-frequency mode representing interaction with the medium, and a quantum high-frequency mode representing internal vibrations. The classical mode governs the high-temperature and thermally activated population equilibria, and the quantum mode governs the low-temperature populations via tunneling as well as spectral line shapes. S-13 a InP/ZnS InP/ZnSe InP/ZnSe/ZnS b InP/ZnS InP/ZnSe InP/ZnSe/ZnS αoff = 1.43 αoff = 1.46 αon = 1.38 αoff = 1.42 αon = 1.25 10-1 c 101 ton (s) P[toff] (s -1) P[ton] (s -1) αon = 1.33 103 10-1 core/shell 101 toff (s) 103 core/shell/shell Charged state Charged state ΔE2 ΔE1 ΔE2 ΔE1 Neutral state Neutral state Figure S11. On- (a) and off-time (b) probability density plots calculated using more than 100 single QDs, and fitted using truncated power-law and power-law equations, respectively, with a high value of adjusted r-square (0.99). (c) A schematic of the charge trapping (blue arrows) and detrapping (pink arrows) processes. S-14 Relative PL Intensity (%) 540 100 536 95 532 90 528 85 524 80 PL Wavelength (nm) 105 520 0 10 20 30 Time (h) 40 50 60 Figure S11. Photostability of the InP/ZnSe/ZnS QDs. Relative PL intensity (green) and PL wavelength (blue) changes over time. S-15 2. References 1. Mooney, J.; Krause, M. M.; Saari, J. I.; Kambhampati, P. Challenge to the Deep-trap Model of the Surface in Semiconductor Nanocrystals Phys. Rev. B 2013, 87, 081201. S-16

Disclaimer: Justia Dockets & Filings provides public litigation records from the federal appellate and district courts. These filings and docket sheets should not be considered findings of fact or liability, nor do they necessarily reflect the view of Justia.


Why Is My Information Online?