Nanoco Technologies Ltd. v. Samsung Electronics Co., Ltd. et al
Filing
1
COMPLAINT against Samsung Advanced Institute of Technology, Samsung Display Co., Ltd., Samsung Electronics America, Inc., Samsung Electronics Co., Ltd., Samsung Electronics Co., Ltd. Visual Display Division ( Filing fee $ 400 receipt number 0540-7664317.), filed by Nanoco Technologies Ltd.. (Attachments: # 1 Civil Cover Sheet, # 2 Exhibit 1, # 3 Exhibit 2, # 4 Exhibit 3, # 5 Exhibit 4, # 6 Exhibit 5, # 7 Exhibit 6, # 8 Exhibit 7, # 9 Exhibit 8, # 10 Exhibit 9, # 11 Exhibit 10, # 12 Exhibit 11, # 13 Exhibit 12, # 14 Exhibit 13, # 15 Exhibit 14)(Henry, Claire)
Exhibit 14
Supporting Information
Bright and Uniform Green Light Emitting
InP/ZnSe/ZnS Quantum Dots for Wide Color Gamut
Displays
Yongwook Kim†∥, Sujin Ham‡∥ Hyosook Jang†, Ji Hyun Min†, Heejae Chung†, Junho Lee†,
Dongho Kim‡* and Eunjoo Jang†*
†
Inorganic Material Lab, Samsung Advanced Institute of Technology, Samsung Electronics, 130
Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea.
‡
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722,
Republic of Korea.
∥These
authors contributed equally to this work.
*E mail: ejjang12@samsung.com; dongho@yonsei.ac.kr
S-1
Table of Contents
1. Supporting Figures and Table
2. References
S-2
1. Supporting Figures and Table
a
In(LA)3
150°C
In-P-Zn ligand
complex
Zn(OA)2 (TMS)3P
170°C
InP-Zn
magic-sized cluster
(labs = 370 nm)
240°C
InP
Growth and Focusing
b
Intensity
150°C
170°C
240°C
300
400
500
Wavelength (nm)
180
c
600
700
d =2.0 nm
σ = 12%
160
140
Counts
120
100
80
60
40
20
20 nm
0
0
1
2
3
4 5 6 7
Diameter (nm)
8
9 10 11
d
(TMS)3P injection at
150°C
Intensity
280°C
300
400
500
Wavelength (nm)
600
700
Figure S1. (a) Scheme of the InP core growth. (b) Absorption spectrum evolution during the InP
growth. (c) A STEM image (left) and the size distribution (right) of InP cores. The black line in
the size distribution is the Gaussian fit. (d) Comparison of absorption spectra of InP QDs
prepared by injecting (TMS)3P at 150°C and 280°C.
S-3
Table S1. Elemental compositions of QDs and calculated thickness of each shell as well as the
diameter of QDs.
Sample
Mole ratio (X/In)
Thickness (nm)
Diameter
ZnSe
ZnS
ZnSe/ZnS
(nm)
1.00
-
-
-
2.0
15.3
1.00
1.5
-
1.5
5.0
34.9
15.3
1.00
1.5
0.5
2.0
6.0
10.3
0.00
1.00
-
1.0
1.0
4.0
P/In
S/In
Zn/In Se/In In/In
InP
0.73
0.00
0.37
0.00
InP/ZnSe
0.57
0.00
16.7
InP/ZnSe/ZnS
0.67
14.7
InP/ZnS
0.67
8.45
S-4
60
a
InP/ZnSe
d = 5.3 nm
σ = 15%
Counts
40
20
0
0
1
2
3
4
5
6
7
20
b
8
9 10 11
d = 7.3 nm
σ = 16%
InP/ZnSe/ZnS
Counts
15
10
5
0
0
1
2
3
4
5
6
7
8
9 10 11
120
c
d = 4.2 nm
σ = 12%
InP/ZnS
100
Counts
80
60
40
20
20 nm
0
0
1
2
3
4 5 6 7
Diameter (nm)
8
9 10 11
Figure S2. STEM images (left) and their corresponding size distributions (right) of InP/ZnSe (a),
InP/ZnSe/ZnS (b), and InP/ZnS QDs (c). Black lines indicate Gaussian fitting of the size
distribution.
S-5
HAADF
In
P
Se
S
10 nm
Zn
Figure S3. STEM EDS mapping images of InP/ZnSe/ZnS QDs.
S-6
a
Intensity
InP/ZnS
300
400
500
600
700
Wavelength (nm)
b
c
2 nm
20 1/nm
d
Intensity
InP/ZnS
10
20
30
40
50
2 Theta (deg)
60
70
Figure S4. (a) Absorption (dotted lines) and emission (solid lines) spectra of InP/ZnS QDs. A
HR-STEM image (b) and its FFT diffractogram (c) of InP/ZnS QD. (d) Powder XRD patterns of
InP/ZnS QDs. The vertical bars represent the diffraction patterns for bulk zinc-blende ZnS.
S-7
PL Intensity
InP/ZnS
InP/ZnSe
InP/ZnSe/ZnS
400
450
500
550
Wavelength (nm)
600
650
Figure S5. Steady-state emission spectra for InP/ZnS, InP/ZnSe, and InP/ZnSe/ZnS. Fitting each
emission spectrum to a Gaussian function (short gray dashes) at the front line creates a tail on the
right side of the spectrum. The percentage of the tail is 14% of InP/ZnS, 29% of InP/ZnSe, and
11% of InP/ZnSe/ZnS.
S-8
0
100
10
InP/ZnS
610
10 -1
10-1
450
PL Intensity (counts / 20 ms)
10 -2
10-2
0
0
100
100
200
200
300
300
400
400
1000
10
500
500
InP/ZnSe
635
-1
10-1
10
470
-2
10-2
0
0
100
100
200
200
300
300
0
100
10
400
400
500
500
InP/ZnSe/ZnS
10-1
10-1
610
470
10-2
10-2
0
100
100
200
200
300
300
Time (ns)
400
400
500
500
Figure S6. Time-resolved PL decay curves probed at different wavelengths with a 10 nm
spectral width for InP/ZnS (top), InP/ZnSe (middle), and InP/ZnSe/ZnS (bottom).
S-9
InP/ZnS
PL Intensity (norm.)
InP/ZnSe
Temp. (K)
77
97
117
137
157
177
197
217
237
257
277
297
InP/ZnSe/ZnS
450
500
550
600 650
700
Wavelength (nm)
750
Figure S7. Normalized temperature-dependent PL spectra of the InP/ZnS (top), InP/ZnSe
(middle), and InP/ZnSe/ZnS (bottom) QDs
S-10
Se 2P3/2
InP/ZnS
InP/ZnSe
InP/ZnSe/ZnS
Se–O
Se 3d
S 2P
b
Intensity
Se 2P1/2
a
172
168
164
160
Binding Energy (eV)
156
68
64
60
56
Binding Energy (eV)
52
Figure S8. S (2P) and Se (2P1/2) peaks (a) and Se (3d) peak (b) of high-resolution XPS spectra of
InP/ZnSe (dark cyan), InP/ZnSe/ZnS (green) and InP/ZnS QDs (navy).
S-11
a 2.55
InP/ZnS
InP/ZnSe
InP/ZnSe/ZnS
Energy (eV)
2.50
2.45
2.40
2.35
2.30
50
100
b 260
150
200
Temperature (K)
250
300
250
300
InP/ZnS
InP/ZnSe
InP/ZnSe/ZnS
240
FWHM (meV)
220
200
180
160
140
120
50
100
150
200
Temperature (K)
Figure S9. Temperature-dependent PL peak energy (a) and FWHM (b) of the InP/ZnSe,
InP/ZnSe/ZnS, and InP/ZnS QDs.
S-12
1S
Energy
Surface
Core
GS
Configuration coordinate (a.u.)
Figure S10. Schematics of core and surface emission for the QDs. In this approach, described by
Marcus-Jortner electron transfer theory1, the possibility of tunneling through the potential barrier
is explicitly allowed via a minimal model consisting of two modes: a classical low-frequency
mode representing interaction with the medium, and a quantum high-frequency mode
representing internal vibrations. The classical mode governs the high-temperature and thermally
activated population equilibria, and the quantum mode governs the low-temperature populations
via tunneling as well as spectral line shapes.
S-13
a
InP/ZnS
InP/ZnSe
InP/ZnSe/ZnS
b
InP/ZnS
InP/ZnSe
InP/ZnSe/ZnS
αoff = 1.43
αoff = 1.46
αon = 1.38
αoff = 1.42
αon = 1.25
10-1
c
101
ton (s)
P[toff] (s -1)
P[ton] (s -1)
αon = 1.33
103
10-1
core/shell
101
toff (s)
103
core/shell/shell
Charged
state
Charged
state
ΔE2
ΔE1
ΔE2
ΔE1
Neutral state
Neutral state
Figure S11. On- (a) and off-time (b) probability density plots calculated using more than 100
single QDs, and fitted using truncated power-law and power-law equations, respectively, with a
high value of adjusted r-square (0.99). (c) A schematic of the charge trapping (blue arrows) and
detrapping (pink arrows) processes.
S-14
Relative PL Intensity (%)
540
100
536
95
532
90
528
85
524
80
PL Wavelength (nm)
105
520
0
10
20
30
Time (h)
40
50
60
Figure S11. Photostability of the InP/ZnSe/ZnS QDs. Relative PL intensity (green) and PL
wavelength (blue) changes over time.
S-15
2. References
1. Mooney, J.; Krause, M. M.; Saari, J. I.; Kambhampati, P. Challenge to the Deep-trap
Model of the Surface in Semiconductor Nanocrystals Phys. Rev. B 2013, 87, 081201.
S-16
Disclaimer: Justia Dockets & Filings provides public litigation records from the federal appellate and district courts. These filings and docket sheets should not be considered findings of fact or liability, nor do they necessarily reflect the view of Justia.
Why Is My Information Online?